If a cos theta - b sin theta = c then show that a sin theta + b cos theta = plus or minus root over a square + b square = c square
Gyankashyap:
solution also send to me
Answers
Answered by
487
Answer:
Step-by-step explanation:
asinθ + bcosθ = c
taking square both sides,
(asinθ + bcosθ)² = c²
⇒a²sin²θ + b²cos²θ + 2absinθ.cosθ = c² --------(1)
Let acosθ - bsinθ = x
Squaring both sides
(acosθ - bsinθ)² = x²
⇒a²cos²θ + b²sin²θ -2absinθ.cosθ = x² ------(2)
Add equation (1) and (2),
a²sin²θ + b²cos²θ +2abinθ.cosθ + a²cos²θ + b²sin²θ -2absinθ.cosθ = c² + x²
⇒(a² + b²)cos²θ + (a² +b²)sin²θ = c² + x²
⇒(a² + b²)[sin²θ + cos²θ ] = c² + x²
⇒(a² + b²) = c² + x² [∵ sin²x + cos²x = 1 ]
⇒(a² + b² - c²) = x²
Take square root both sides,
+/-root a2+b2-c2=x
Hence, acosθ - bsinθ =
Root a^2 + b^2 - c^2.
Hope u will found it helpful....
Answered by
245
Answer:
,
Step-by-step explanation:
Hey!!
Hope my answer helps....
:)
Attachments:
Similar questions