if a cos theta + b sin theta equal 4 and a sin theta minus B cos theta equal 3 then a square + b square = 25
Brendancrawford:
plz mark asd brainliest i need it plz
Answers
Answered by
1
Answer:
Step-by-step explanation:
A cos theta + B sin theta = 4
[A cos theta + B sin theta]^2 = 16 ……….i
A sin theta - B cos theta = 3
[A sin theta - B cos theta]^2 = 9 ………….i i
Adding equation i and ii we get,
(A cos theta)^2 + (B sin theta)^2 + (A sin theta)^2 + (B cos theta)^2 + 2 AB cos theta sin theta - 2 AB cos theta sin theta = 25
A^2[(cos theta)^2 + (sin theta)^2] + B^2[(cos theta)^2 + (sin theta)^2] = 25
A^2 + B^2 = 25
Answered by
2
Let theta =x
a.cosx+b.sinx=4……………….(1)
a.sinx-b.cosx=3………………….(2)o
On squaring the eqn.(1) & (2) both sides and then adding.
a^2.cos^2x+b^2.sin^2x+2.a.b.sinx.cosx+a^2sin^2x+b^2.cos^2x
-2.a.b.sinx.cosx =4^2+3^2.
or. a^2(cos^2x+sin^2x)+b^2.(sin^2x+cos^2x)=25
or. a^2.1+b^2.1=25
or. a^2+b^2 = 25. Answer.
Similar questions