if a cos theta + b sin theta equal to M and a sin theta minus B cos theta equal to N prove that n square + n square equal to a square + b square
Answers
Given: a cos θ + b sin θ = m …….(1)
a sin θ – b cos θ = n …….(2)
Square equation (1) and (2) on both sides:
a²cos²θ + b²sin²θ + 2ab cos θ sin θ = m² …….(3)
a²sin²θ + b²cos²θ – 2ab cos θ sin θ = n² ……..(4)
Add equation (3) and (4):
[a²cos²θ + b²sin²θ + 2ab cos θ sin θ] + [a²sin²θ + b²cos²θ – 2ab cos θ sin θ] = m² + n²
⇒ a²(cos²θ + sin²θ) + b²(cos²θ + sin²θ) = m² + n²
⇒ a² + b² = m² + n²
Hence, proved.
Answer:
Step-by-step explanation:
Given: a cos θ + b sin θ = m …….(1)
a sin θ – b cos θ = n …….(2)
Square equation (1) and (2) on both sides:
a²cos²θ + b²sin²θ + 2ab cos θ sin θ = m² …….(3)
a²sin²θ + b²cos²θ – 2ab cos θ sin θ = n² ……..(4)
Add equation (3) and (4):
[a²cos²θ + b²sin²θ + 2ab cos θ sin θ] + [a²sin²θ + b²cos²θ – 2ab cos θ sin θ] = m² + n²
⇒ a²(cos²θ + sin²θ) + b²(cos²θ + sin²θ) = m² + n²
⇒ a² + b² = m² + n²
Hence, proved.
Give it the best ans