Math, asked by pandu5843, 7 months ago

If a cos theta +b sin theta = m, a sin theta - b cos theta =n, prove thata2+b2= m2+n2

Answers

Answered by kaushik05
7

Given:

 \star \: a \cos \theta \:  + b \sin  \theta = m -  -  -  -- (1) \\ \\   \star \:  a \sin \theta -  b \cos \theta = n -  -  -  -  -  - (2)

To prove:

 \star \:  {a}^{2}  +  {b}^{2}  =  {m}^{2}  +  {n}^{2}  \\

Solution:

• square both sides and add 1 and 2 : we get ,

 \implies \:  {m}^{2}  +  {n}^{2}  = ( {a \cos\theta + b \sin \theta})^{2}  + ( { a \sin \theta - b \cos \theta)}^{2}  \\  \\  \implies \:  {m}^{2}  +  {n}^{2}  =  {a}^{2}  { \cos}^{2}  \theta +  {b}^{2}   { \sin}^{2}  \theta + \cancel{ 2ab \cos \theta \sin \theta} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {a}^{2}   { \sin}^{2}  \theta +  {b}^{2}  { \cos}^{2}  \theta - \cancel{ 2ab \sin \theta \cos \theta} \\  \\  \implies \:  {m}^{2}  +  {n}^{2}  =  {a}^{2} ( { \cos}^{2}  \theta +  { \sin}^{2}  \theta) +  {b}^{2} ( { \sin}^{2}  \theta +  { \cos}^{2}  \theta) \\  \\  \implies \:  {m}^{2}  +  {n}^{2}  =  {a}^{2} (1) +  {b}^{2} (1) \\  \\  \implies \:  {m}^{2}  +  {n}^{2}  =  {a}^{2}  +  {b}^{2}  \\

LHS = RHS

Hence, proved .

Formula :

• (a+b)² = a²+b²+2ab

• (a-b)²= a²+b²-2ab

• sin²@+ cos²@ = 1

Answered by parry8016
2

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions