if a cos theta + b sin theta = m and a sin theta - b cos theta =n then prove that a square + b square = m square + n square
Answers
Step-by-step explanation:
NOTE :
HERE ^ MEANS POWER FUNCTION FOR EX. M^2 MEANS
=. M SQUARE
a cos theta + b sin theta = m
a sin theta - b cos theta =n
square bothe equation and add
(a cos theta + b sin theta)^2 = m^2
(a sin theta - b cos theta)^2 =n^2
a^2 (cos theta)^2 + b^2 (sin theta)^2 + 2×a×b (sin theta)× ( cos theta)=m^2
b^2 (cos theta)^2 + a^2 (sin theta)^2 - 2×a×b (sin theta)× ( cos theta)=n^2
【 add both and taking same sine same side】
a^2【cos theta^2 + sin theta ^2】 + b^2【cos theta^2 + sin theta ^2】 +2×a×b (sin theta)× (costheta) -2×a×b (sin theta)× (costheta) = m^2 +n^2
because 【({{ cos theta^2+ sin theta^2 =1 )}】
then.....
a^2+ b^2 = m^2 + n^2