if A cos theta - B sin theta = x and A sin theta + B cos theta = y . Prove that a^2 + b ^2 = x^2 + Y^2
please give me answer
Answers
Answered by
1
Answer:
Error :- It will be a sin theta - b cos theta = y instead of a sin theta + b cos theta = y .
Answer :-
Step-by-step explanation :-
Given :-
→ a cos∅ + b sin∅ = x .
→ a sin∅ - b cos∅ = y .
Now,
We have,
\because∵ x² + y² .
= ( a cos ∅ + b sin ∅ )² + ( a sin∅ - b cos∅ )² .
= a²cos²∅ + b²cos²∅ + 2 ab cos∅ sin∅ + a²sin²∅ + b²sin²∅ - 2 ab sin∅ cos∅ .
= a²cos²∅ + b²cos²∅ + a²sin²∅ + b²sin²∅ .
= a²cos²∅ + a²sin²∅ + b²cos²∅ + b²cos²∅ .
= a²( cos²∅ + sin²∅ ) + b²( cos²∅ + sin²∅ ) .
= a² + b² .
LHS = RHS .
Hence, it is proved .
Hope it'll help you.... thank me....and also add me in BRAIN LIST
Similar questions