Math, asked by elswordtheflame, 10 months ago

IF A= [ COS THETA -SIN THETA]
[ SIN THETA. COS THETA]
THEN FIND THE VALUE OF THETA SATISFYING THE EQUATION A^T+A=I2

Answers

Answered by MaheswariS
4

\textbf{Given:}

A=\left(\begin{array}{cc}cos\,\theta&-sin\,\theta\\sin\,\theta&cos\,\theta\end{array}\right)

\text{and $A^T+A=I_2$}

\textbf{To find:}

\text{The value of $\theta$ satisfying the given equation}

\textbf{Solution:}

\text{Consider,}

A=\left(\begin{array}{cc}cos\,\theta&-sin\,\theta\\sin\,\theta&cos\,\theta\end{array}\right)

A^T=\left(\begin{array}{cc}cos\,\theta&sin\,\theta\\-sin\,\theta&cos\,\theta\end{array}\right)

\text{Now, $A^T+A=I_2$}

\implies\left(\begin{array}{cc}cos\,\theta&sin\,\theta\\-sin\,\theta&cos\,\theta\end{array}\right)+\left(\begin{array}{cc}cos\,\theta&-sin\,\theta\\sin\,\theta&cos\,\theta\end{array}\right)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)

\implies\left(\begin{array}{cc}cos\,\theta+cos\,\theta&sin\,\theta-sin\,\theta\\-sin\,\theta+sin\,\theta&cos\,\theta+cos\,\theta\end{array}\right)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)

\implies\left(\begin{array}{cc}2\,cos\,\theta&0\\0&cos\,\theta\end{array}\right)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)

\text{Equating the corresponding elements on bothsides, we get}

2\,cos\,\theta=1

\implies\,cos\,\theta=\dfrac{1}{2}

\implies\bf\,\theta=\dfrac{\pi}{3}

\therefore\textbf{The value of $\bf\theta$ is $\bf\dfrac{\pi}{3}$}

Find more:

\text{A square matrix A is said to be}\;\textbf{Symmetric}\;\text{if}\;A=-A^{T}

https://brainly.in/question/15912397

Answered by foreverarmyv
0

Answer:

Holaaaà!!!!

Step-by-step explanation:

How's everything going?

Similar questions