If a cos thetha -b sin thetha = C, then a sin thetha + b cos thetha =
Answers
Answered by
3
Answer
- a sinθ + b cosθ = ? = ± √( a² + b² - c² )
Given
- a cosθ - b sinθ = c
To Find
- a sinθ + b cosθ = ?
Solution
a cosθ - b sinθ = c
Squaring on both sides , we get ,
⇒ ( a cosθ - b sinθ )² = c²
⇒ a².cos²θ + b².sin²θ - 2.acosθ.bsinθ = c² ... (1)
Now ,
a sinθ + b cosθ = ?
Squaring on both sides , we get ,
⇒ ( a sinθ + b cosθ )² = ?²
⇒ a².sin²θ + b².cos²θ + 2asinθ.bcosθ = ?² ... (2)
Now add (1) & (2) , we get ,
⇒ a².cos²θ + b².sin²θ + a².sin²θ + b².cos²θ - 2.acosθ.bsinθ + 2asinθ.bcosθ = c² + ?²
⇒ a² ( sin²θ + cos²θ ) + b² ( sin²θ + cos²θ ) = c² + ?²
⇒ a² + b² = c² + ?²
⇒ ?² = a² + b² - c²
⇒ ? = ± √( a² + b² - c² )
So , a sinθ + b cosθ = ? = ± √( a² + b² - c² )
Similar questions