Math, asked by sang2570, 9 months ago

If A=[cos x sin x]. Then show that
[-sin x cos x]
A^2=[cos 2x sin 2x]
[-sin 2x cos 2x]

Answers

Answered by itsmegopaljee
0

Answer:

A=[ cosx−sinxsinxcosx ]

A2=[ cosx − sinxsinxcosx][ cosx − sinxsinxcosx ]

A2=[cos2x − sin2x − sinxcosx − sinxcosxcosxsinx + sinxcosx − sin2x + cos2x ]

A2=[ cos2x − sin2xsin2xcos2x]

Now,

A'=[ cosxsinx − sinxcosx ]

Therefore,

IAA'=[ cosx − sinxsinxcosx ][ cosxsinx − sinxcosx ]

AA'=[cos2x + sin2x − sinxcosx + sinxcosx − cosxsinx + sinccosxsin2x + cos 2x ]

AA'=[1001 ]=1

Step-by-step explanation:

step-1

A=[ cosx−sinxsinxcosx ]

step-2

A2=[ cosx − sinxsinxcosx][ cosx − sinxsinxcosx ]

step-3

A2=[cos2x − sin2x − sinxcosx − sinxcosxcosxsinx + sinxcosx − sin2x + cos2x ]

step-4

A2=[ cos2x − sin2xsin2xcos2x]

Now,

step-5

A'=[ cosxsinx − sinxcosx ]

Therefore,

step-6

AA'=[ cosx − sinxsinxcosx ][ cosxsinx − sinxcosx ]

step-7

AA'=[cos2x + sin2x − sinxcosx + sinxcosx − cosxsinx + sinccosxsin2x + cos 2x ]

step-8

finally

AA'=[1001 ]=1

Similar questions