Math, asked by sandysandy536, 5 months ago

If A=cos²B+sin⁴B
Then p.v that for all values of B,3/4<=A<=1.

Answers

Answered by shadowsabers03
5

Given,

\longrightarrow A=\cos^2B+\sin^4B

Since \sin^2B+\cos^2B=1,

\longrightarrow A=\cos^2B+(1-\cos^2B)^2

\longrightarrow A=\cos^2B+1-2\cos^2B+\cos^4B

\longrightarrow A=\cos^4B-\cos^2B+1

\longrightarrow A=\cos^2B(\cos^2B-1)+1

\longrightarrow A=1-\sin^2B\cos^2B

\longrightarrow A=1-\dfrac{1}{4}(2\sin B\cos B)^2

Since 2\sin B\cos B=\sin(2B),

\longrightarrow A=1-\dfrac{1}{4}\sin^2(2B)

We know that \sin x\in[-1,\ 1]. So,

\longrightarrow\sin(2B)\in[-1,\ 1]

Squaring, we get,

\longrightarrow\sin^2(2B)\in[0,\ 1]

Dividing by 4,

\longrightarrow\dfrac{1}{4}\sin^2(2B)\in\left[0,\ \dfrac{1}{4}\right]

Multiplying by -1, (note the interval limit change)

\longrightarrow-\dfrac{1}{4}\sin^2(2B)\in\left[-\dfrac{1}{4},\ 0\right]

Adding 1,

\longrightarrow1-\dfrac{1}{4}\sin^2(2B)\in\left[\dfrac{3}{4},\ 1\right]

That is,

\longrightarrow\underline{\underline{A\in\left[\dfrac{3}{4},\ 1\right]}}\quad\quad\forall\,B\in\mathbb{R}

Hence Proved!

Similar questions