Math, asked by baziger23032006, 17 days ago

if a cos³α + 3a cos α sin²α=m and a sin³α + 3a cos²α sin α=n. Then (m+n)⅔ + (m-n)⅔ is equal to :-

Answers

Answered by aryansaraswatepi163
0

Answer:

Step-by-step explanation:

the first step is to add m+n then

a*cos^3(α)+3a cos(α)sin^2(α)=m

asin^3(α)+3acos^2(α)sin(α)=n

then (m+n)=a(sin(α)+cos(α))^3

hence similarly

(m-n)=a(sin(α)-cos(α))^3

hence [(m+n)^(2/3)+(m-n)^(2/3)=2*a^(2/3)]

Answered by gouravgupta65
3

\large{\blue{\boxed{\green{\boxed{\red{\boxed{\bf{\mathcal{\purple{..A}\orange{N}\pink{S}\red{W}\blue{E}\green{R..}}}}}}}}}}

\red{2 {a}^{ \frac{2}{3} }}

\large\mathbb\blue{\fcolorbox{Yellow}{black}{Explination}}

Step 1 => Adding m amd n (m + n)

a cos³α + 3a cos α sin²α + a sin³α + 3a cos²α sin α = m + n

taking common a

a [ cos³α+ 3 cos α sin²α + sin³α + 3 cos²α sin α] = m + n

a[cos α + sin α]³ = m + n — — — — (i)

Step 2 => On subtracting n from m (m - n) we get

a[cos α - sin α]³ = m - n — — — — (ii)

Step 3 => Substituting the value of eq. (i) and eq. (ii)

a⅔ [cos α + sin α]² + a⅔ [cos α - sin α]²

taking common a

a⅔ { [cos α + sin α]² + [cos α - sin α]² }

a⅔ { 1 + 2sin α cos α + 1 - 2sin α cos α }

 \large {\boxed{ \bold{2 {a}^{ \frac{2}{3} } }}}

☆✿╬ʜᴏᴘᴇ ɪᴛ ʜᴇʟᴘs ᴜ╬✿☆

Similar questions