Math, asked by JatinAastha, 1 year ago

if a cosA + b sinA =m and a sinA-b cosA =n Prove that a2+b2=m2+n2

Answers

Answered by ankurvijay200p9yawm
31
thanks
please follow me
Attachments:
Answered by mysticd
5

 Given \: (a cos A + b sin A ) = m \: --(1)

 and \: \: (a sin A -  b cos A ) = m \: --(2)

 (a cos A + b sin A )^{2} + (a sin A -  b cos A )^{2} \\= m^{2} + n^{2}

 \implies (a cosA)^{2} + (b sinA)^{2} + 2 \times (a cos A) \times ( b sin A) \\+  (a sinA)^{2} + (b cos A)^{2} - 2 \times (a sin A) \times ( b cos A) = m^{2} + n^{2}

 \implies a^{2} cos^{2}A + b^{2} sin^{2} A+ 2 ab sinA cos A\\+  a^{2} sin^{2} A + b^{2} cos^{2} A - 2 ab sin A cos A= m^{2} + n^{2}

 \implies a^{2}( cos^{2}A + sin^{2} A) +  b^{2} (sin^{2} A + cos^{2} A) = m^{2} + n^{2}

 \implies a^{2} + b^{2} = m^{2} + n^{2}

 \boxed { \pink { Cos^{2} A + Sin^{2} A = 1 }}

 Hence \: proved

•••♪

Similar questions