If a cose + b sin 0 = m and a sin 8-b cos 0 = n, prove that a' + b2 = m2 +n2
Answers
Answered by
15
Answer:
Step-by-step explanation:
Given :
a cos θ + b sin θ = m,
a sin θ - b cos θ = n,
To prove :
a² + b² = m² + n²
Proof :
We know that,
sin² θ + cos² θ = 1,
______
a cos θ + b sin θ = m ...(i)
a sin θ - b cos θ = n ...(ii)
(i)² + (ii)²
⇒ (a cos θ + b sin θ)² + (a sin θ - b cos θ)² = m² + n²
⇒ a² cos² θ + b² sin² θ + 2ab sin θ cos θ + a² sin² θ + b² cos² θ - 2ab sin θ cos θ = m² + n²
⇒ a²( sin² θ + cos² θ) + b²( sin² θ + cos² θ) = m² + n²
⇒ a² (1) + b² (1) = m² + n²
⇒ a² + b² = m² + n²
Hence,proved.
Similar questions