If a coso +b sino =m and a sino-b coso=n,prove that a^2+b^2=m^2+n^2
Answers
Answered by
4
Answer:
a²+b² = m²+n²
Given :-
a Cos θ + b Sin θ = m
a Sin θ - b Cos θ = n
To find :-
Prove that a²+b² = m²+n²
Solution :-
Given that :-
a Cos θ + b Sin θ = m
On squaring both sides then
=> (a Cos θ + b Sin θ)² = m²
=>a²Cos²θ+2abCosθSinθ+b²Sin²θ=m²---(1)
Since (a+b)²=a²+2ab+b²
and
a Sin θ - b Cos θ = n
On squaring both sides then
=> (a Sin θ - b Cos θ)² = n²
=>a²Sin²θ-2abSinθCosθ+b²Cos²θ=n²---(2)
Since (a-b)²=a²-2ab+b²
On adding (1)&(2)
a²Cos²θ+2abCosθSinθ+b²Sin²θ=m²
a²Sin²θ-2abSinθCosθ+b²Cos²θ=n²
(+)
______________________________
a²Cos²θ+a²Sin²θ+b²Sin²θ+b²Cos²θ
=m²+n²
______________________________
=> a²Cos²θ+a²Sin²θ+b²Sin²θ+b²Cos²θ
=m²+n²
=> a²(Cos²θ+Sin²θ)+b²(Sin²θ+Cos²θ)
=m²+n²
We know that Sin²A + Cos² A = 1
=> a²(1)+b²(1) = m²+n²
=> a²+b² = m²+n²
Hence, Proved.
Used formulae:-
- (a-b)²=a²-2ab+b²
- (a+b)²=a²+2ab+b²
- Sin²A + Cos² A = 1
Similar questions