if a CosØ - b SinØ = X and a SinØ + b CosØ = y. Prove that a²+b² = x²+y²
Answers
Answered by
1
Answer:
a cosθ - b sinθ = x and a sinθ + b cosθ = y
R.H.S. = x2 + y2
= (a cosθ - b sinθ)2 + (a sinθ + b cosθ)2
= a2cos2θ - 2ab cosθ sinθ + b2sin2θ + a2sin2θ +
2absinθ cosθ + b2cos2θ
= (a2+b2) cos2θ + (b2+a2)sin2θ
= (a2+b2)cos2θ + (a2+b2)sin2θ
= (a2+b2)(cos2θ + sin2θ)
= (a2+b2) [∵ cos2θ + sin2θ = 1]
= L.H.S. ∴ a2+b2 = x2+y2.
Answered by
4
Given :
a cos∅ - b sin∅ = X ...(1)
a sin∅ + b cos∅ = Y ...(2)
ON SQUARING AND ADDING BOTH THE EQUATION (1) AND (2) ..
We get -
(a cos∅ - b sin∅)² + (a sin∅ + b cos∅)² = x² + y²
a²cos²∅ + b²sin²∅ - 2abcos∅sin∅ + a²sin²∅ + b²cos²∅ + 2absin∅cos∅ = x² + y²
a²(cos²∅ + sin²∅) + b²(sin²∅ + cos²∅) = x² + y²
★ We know that { sin²∅ + cos²∅ = 1 }
Then,
a² + b² = x² + y²
hence proved
Similar questions