Math, asked by Anonymous, 1 month ago

If a curve y = f(x) passes through the point (1, –1) and satisfies the differential equation, y(1 + xy) dx = x dy, then find the value of \small\tt{\frac{-1}{2}

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

y(1 + xy) \: dx = x \: dy

 \implies \:   \frac{dy}{dx} = \frac{y(1 + xy) }{x} \\

Let \:y=vx

\implies\:\frac{dy}{dx}=v+x\frac{dv}{dx}\\

So,

 \implies \:   v + x\frac{dv}{dx} = \frac{vx(1 + x(vx)) }{x} \\

 \implies \:   v + x\frac{dv}{dx} = v(1 + vx^{2} ) \\

 \implies \:    x\frac{dv}{dx} = v + v ^{2} x^{2} - v \\

 \implies \:    x\frac{dv}{dx} =  v ^{2} x^{2}  \\

 \implies \:    \frac{dv}{dx} =  v ^{2} x \\

 \implies \:    \frac{dv}{ {v}^{2} } =   x \: dx \\

 \implies \:    \int \frac{dv}{ {v}^{2} } =  \int  x \: dx \\

 \implies \:     - \frac{1}{ {v} } =     \frac{ {x}^{2} }{2}  +C \\

 \implies \:     - \frac{x}{y } =     \frac{ {x}^{2} }{2}  +C \\

It passes through (1,-1)

 \implies \:     - \frac{(1)}{( - 1) } =     \frac{ {(1)}^{2} }{2}  +C \\

 \implies \:    1=     \frac{1 }{2}  +C \\

 \implies \:    C  =  \frac{1}{2} \\

So, required curve,

 \implies \:     - \frac{x}{y } =     \frac{ {x}^{2} }{2}  + \frac{1}{2}  \\

 \implies \:     - \frac{x}{y } =     \frac{ {x}^{2} + 1 }{2}    \\

 \implies \:     - \frac{2x}{ {x}^{2}  + 1 } =     y    \\

 \implies \:  y =f(x) =     - \frac{2x}{ {x}^{2}  + 1 }     \\

So,

f \bigg(-\frac{1}{2}  \bigg) =  - \frac{2 \times  \frac{1}{2} }{( \frac{1}{2} )^{2}  + 1}  \\

 \implies \: f \bigg(-\frac{1}{2}  \bigg) =  - \frac{1}{\frac{1}{4}   + 1}  \\

\implies \: f \bigg(-\frac{1}{2}  \bigg) =  - \frac{1}{\frac{1 + 4}{4}   }  \\

\implies \: f \bigg(-\frac{1}{2}  \bigg) =  - \frac{4}{1 + 4 }  \\

\implies \: f \bigg(-\frac{1}{2}  \bigg) =  - \frac{4}{5}  \\

Answered by Sofia213
0

Answer:

if a body starts from rest what can be said about the acceleration of body

Step-by-step explanation:

Sorry but can I know how you are able to give multiple thanks? (-^〇^-)

Similar questions