Math, asked by prithviraj3815, 8 months ago

if a cylinder and cone have equal radii and heights then find the ratio of their volumes​

Answers

Answered by Anonymous
300

\:{\red{\underline{\underline{\large{\mathtt{GIVEN}}}}}}

  • A cylinder and cone have equal radii and height

\:{\orange{\underline{\underline{\large{\mathtt{TO\:FIND}}}}}}

  • Ratio of their volumes

\:{\purple{\underline{\underline{\large{\mathtt{SOLUTION}}}}}}

Let,

  • Radii of cylinder be r
  • Height of cylinder be h

According to the given information

  • Radii of cylinder = Radii of cone
  • Height of cylinder = Height of cone

We know that,

  • Volume of cylinder = πr²h
  • Volume of cone = ⅓πr²h

Now,

→ Volume of cylinder : Volume of cone

→ πr²h : ⅓πr²h

→ 1 : ⅓

→ 1×3 : ⅓×3

→ 3 : 1

★ Hence, Ratio of their volumes is 3 : 1

Answered by Anonymous
35

QUESTION:-

✯.ɪғ ᴀ ᴄʏʟɪɴᴅᴇʀ ᴀɴᴅ ᴄᴏɴᴇ ʜᴀᴠᴇ ᴇϙᴜᴀʟ ʀᴀᴅɪɪ ᴀɴᴅ ʜᴇɪɢʜᴛs ᴛʜᴇɴ ғɪɴᴅ ᴛʜᴇ ʀᴀᴛɪᴏ ᴏғ ᴛʜᴇɪʀ ᴠᴏʟᴜᴍᴇs

ANSWER

\Large\underline\bold{GIVEN,}

 \sf\dashrightarrow  THE\:RADII\:AND\: HEIGHT\:OF\:THE\:CONE\:AND\:CYLINDER\:ARE\:EQUAL

\Large\underline\bold{TO\:FIND,}

 \sf\dashrightarrow  RATIO\:OF\:VOLUME\:OF\:THE\:CYLINDER\:AND\:CONE

Ratio of their volumes

\Large\underline\bold{FORMULA\:USED,}

 \sf\therefore volume\:of\:cylinder\: \pi r^2 h

 \sf\therefore volume\:of\:cone\: \dfrac{1}{3} \pi r^2 h

\Large\underline\bold{SOLUTION,}

 \sf\therefore let\:radii\:be\:'r'

 \sf\therefore let\:height\:be\:'h'

ACCORDING TO THE QUESTION,

 \sf\therefore radii\:of\:cylinder\:=radii\:of\:cone

 \sf\therefore height\:of\: cylinder=height\:of\:cone

 \sf\therefore volume\:of\:cylinder :volume\:of\:cone

 \sf\therefore \pi r^2h: \dfrac{1}{3} \pi r^2h

 \sf\therefore \cancel {\pi r^2h}: \dfrac{1}{3} \cancel {\pi r^2h}

 \sf\therefore 1: \dfrac{1}{3}

 \sf\therefore multiplying\:both\: sides\:by\:3

 \sf\therefore 1 \times 3: \dfrac{1}{\cancel{3}} \times \cancel {3}

 \sf\therefore 3:1

 \sf\therefore \dfrac{volume\:of\:cylinder}{volume\:of\:cone} = \dfrac{3}{1}

\sf{\boxed{\sf{volume\:of\:cylinder: volume\:of\:cone= 3:1}}}

__________________________

ADDITIONAL INFORMATION,

DIAGRAM OF CYLINDER:-

\setlength{\unitlength}{1.6mm}\begin{picture}(5,6)\qbezier(18,0)(10,5)(0,0)\qbezier(18,0)(10,-5)(0,0)\qbezier(0,-27)(8,-33)(18,-27)\qbezier(0,-27)(8,-22)(18,-27)\put(0,-27){\line(0,1){27}}\put(18,-27){\line(0,1){27}}\put(9,-27){\circle*{0.6}}\multiput(9,-27)(0,2){14}{\line(0,1){1}}\put(9,0){\circle*{0.6}}\multiput(9,-27)(2,0){5}{\line(1,0){1}}\put(10,-29){RADIUS}\put(10,-13){HEIGHT}\end{picture}

DIAGRAM FOR CONE:-

\begin{lgathered}\begin{lgathered}\setlength{\unitlength}{0.99cm}\begin{picture}(6, 4)\linethickness{0.26mm}\qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){2.8}}\put(3.2,4){\sf{HEIGHT}}\put(3,2){\line(0,2){4.5}}\put(1.5,1.7){\sf{RADIUS}}\qbezier(.2,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(1,4){\sf l}\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\end{picture}\\\end{lgathered}\end{lgathered}

Similar questions
English, 8 months ago