Math, asked by hema7359, 5 months ago

if a cylinder and cone have the same base radius and height then the volume of a cylinder is doubled that of cone

true or false​

Answers

Answered by moltexamrit
0

Answer:

false

Step-by-step explanation:

bcz ghjfutkfhekyeiuiouafuaifauitjyggauifaiaoao;;oefuwefwefe

Answered by mathdude500
1

\bf \:\large \blue{Given  \: Question} 

  • If a cylinder and cone have the same base radius and height then the volume of a cylinder is doubled that of cone. State True or False.

____________________________________________

\huge \orange{AηsωeR} 

\large \red{\sf \: Given :- } 

  • A cylinder and cone have the same base radius and height.

\large\green{\bf \: To  \: Find :- } 

  • State True or False. The volume of a cylinder is doubled that of cone.

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

{{ \boxed{\large{\bold\green{Volume_{(Cylinder)}\: = \:\pi r^2 h }}}}}

where,

  • r = radius of cylinder
  • h = height of cylinder

{{ \boxed{\large{\bold\green{Volume_{(Cone)}\: = \:\dfrac{1}{3} \pi r^2 h }}}}}

where,

  • r = radius of cone
  • h = height of cone

\begin{gathered}\Large{\bold{\pink{\underline{CaLcUlAtIoN\::}}}}  \end{gathered}

\begin{gathered}\begin{gathered}\bf Let = \begin{cases} &\sf{r \: be \: the \: radius \: of \: cylinder \: and \: cone} \\ &\sf{h \: be \: the \: height \: of \: cylinder \: and \: cone} \end{cases}\end{gathered}\end{gathered}

\sf \:  ⟼Volume \:  of  \: cylinder,  \: V_1 = \pi \:  {r}^{2} h

\sf \:  ⟼Volume \:  of  \: cone,  \: V_2 =\dfrac{1}{3}  \pi \:  {r}^{2} h

\begin{gathered}\bf\purple{So,} \end{gathered}

\sf \:  ⟼ \: V_2 = \dfrac{1}{3} V_1

\sf \:  ⟼V_1 = 3V_2

☆ Hence, The volume of a cylinder is triple of that of cone.

\large{\boxed{\boxed{\bf{Hence,  \: given \: statement \: is \: false.}}}}

____________________________________________

\large \red{\bf \:  ⟼ Explore \:  more } ✍

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length ²+breadth ²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions