Math, asked by krishanh526, 1 month ago

If A=diag(-1,-3,2), then |-2A| is equal to: *​

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

\rm :\longmapsto\:A = diag( - 1, - 3,2)

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\: | - 2A|

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:A = diag( - 1, - 3,2)

We know,

If matrix is given in diagonal form, as

\rm :\longmapsto\:A = diag(a,b,c)

then

\rm :\longmapsto\: |A| = abc

So, using this

\rm :\longmapsto\: |A| = ( - 1) \times ( - 3) \times 2 = 6

Now,

\rm :\longmapsto\: | - 2A|

We know,

\boxed{ \bf{ \:  |kA| =  {k}^{n} |A|}}

So, using this identity, we get

\rm \:  =  \:  \:  {( - 2)}^{3} |A|

\rm \:  =  \:  \:  - 8 \times 6

\rm \:  =  \:  \:  - 48

Hence,

\bf :\longmapsto\: | - 2A|  =  -  \: 48

Additional Information

\boxed{ \bf{ \:  | {A}^{ - 1} |  =  \frac{1}{ |A| }}}

\boxed{ \bf{ \:  |AB| =  |A| |B|}}

\boxed{ \bf{ \:  |adjA| =  { |A| }^{n - 1}}}

\boxed{ \bf{ \:  |adjA| =  { |A| }^{n}}}

\boxed{ \bf{ \:  {AA}^{ - 1} =  {A}^{ - 1}A = I}}

\boxed{ \bf{ \:  | {A}^{T} |  =  |A|}}

Similar questions