if a equilateral triangle has been inscribed in a circle of radius 6 cm. find the area of shaded region.( shaded region is the part lying outside the triangle i.e circle - triangle)
Answers
Answered by
97
area of circle= πr^2
circum radius R=( ABC)/4*area
shaded region=area of circle- area of triangle
equilateral triangle:
R=(a^3)/(4*√3/4*a^2)
6=a/√3
a(side)=6√3
area =√3/4*(6√3)*(6√3)
area of Circle=22/7*36
area of shaded=( 22/7*36)-(3√3)/4*36
=113.14-46.764
=66.38
circum radius R=( ABC)/4*area
shaded region=area of circle- area of triangle
equilateral triangle:
R=(a^3)/(4*√3/4*a^2)
6=a/√3
a(side)=6√3
area =√3/4*(6√3)*(6√3)
area of Circle=22/7*36
area of shaded=( 22/7*36)-(3√3)/4*36
=113.14-46.764
=66.38
rudeawakening:
thank you so much
Answered by
140
see the diagram.
Let the equilateral triangle be ABC. Let the center of circle be O.
Let AOD be the altitude of the triangle.
O is the centroid, circumcenter, orthocenter, incenter of triangle ABC.
AOD = √3/2 * AB
So Radius = AO = 2/3 * AOD = AB /√3 (∵ centroid O is at 1/3 height on median)
So AB = √3 * radius = 6√3 cm
Area of circle = π 6² = 36 π cm²
Area of triangle ABC: √3/4 * AB² = 27 √3 cm³
Shaded region = (36 π - 27√3) cm²
Let the equilateral triangle be ABC. Let the center of circle be O.
Let AOD be the altitude of the triangle.
O is the centroid, circumcenter, orthocenter, incenter of triangle ABC.
AOD = √3/2 * AB
So Radius = AO = 2/3 * AOD = AB /√3 (∵ centroid O is at 1/3 height on median)
So AB = √3 * radius = 6√3 cm
Area of circle = π 6² = 36 π cm²
Area of triangle ABC: √3/4 * AB² = 27 √3 cm³
Shaded region = (36 π - 27√3) cm²
Attachments:
Similar questions
Math,
8 months ago
Music,
8 months ago
Social Sciences,
8 months ago
Social Sciences,
1 year ago
Science,
1 year ago