Math, asked by Cutiopj47, 1 year ago

If A = [ First Row - 1 3 3 , Second Row - 1 4 3 , Third Row- 1 3 4 ], verify that A.adj = |A|.I and A^(-1) know ?

Answers

Answered by Swarnimkumar22
22
\bold{\huge{\underline{Question}}}


A = \left[\begin{array}{ccc}1&3&3\\1&4&3\\1&3&4\end{array}\right] \:




\bold{\huge{\underline{Solution-}}}



 \bf \: Firstly \:  we \:  extract  \: co \: -factor  \: of  \: elements  \: of \:  |A| \:




 \bf \: A _{11} =  \left|\begin{array}{ccc}4&3\\3&4\end{array}\right| \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: A _{12} \:   = -  \left|\begin{array}{ccc}1&3\\1&4\end{array}\right| \\  \\  \implies \: 16 - 9 = 7 \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \implies - (4 - 3) =  - 1 \\  \\  \\   \bf \: A _{13} = \left|\begin{array}{ccc}1&4\\1&3\end{array}\right| \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  A _{21}  =  - \left|\begin{array}{ccc}3&3\\3&4\end{array}\right| \\  \\  \implies3 - 4 = -  1  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies- (12 - 19) =  - 3 \\  \\  \\  \bf \: A _{22}  =\left|\begin{array}{ccc}1&3\\1&4\end{array}\right| \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: A _{23} = -  \left|\begin{array}{ccc}1&3\\1&3\end{array}\right| \\  \\  \implies4 - 3 = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies - (3 - 3) = 0 \\  \\  \\  \bf \:A _{31} =  \left|\begin{array}{ccc}3&3\\4&3\end{array}\right| \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: A _{32}  =  - \left|\begin{array}{ccc}1&3\\1&3\end{array}\right| \\  \\  \implies9 - 12 =  - 3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies - (3 - 3) = 0 \\  \\  \\  \bf \: A _{33} = \left|\begin{array}{ccc}1&3\\1&4\end{array}\right|  \:  \implies4 - 3 = 1



 \bf \: Matrix \:  formed  \: from \:  the \:  coefficient \:  of  \: elements \:  of \:  |A|




 \bf \: B = \left[\begin{array}{ccc}7& - 1& - 1\\ - 3&1&0\\ - 3&0&1\end{array}\right]





   {\: Change  \: matrix  \: of \: } adjA = B



 = \left[\begin{array}{ccc}7& - 3& - 3\\ - 1&1&0\\ - 1&0&1\end{array}\right]



A.adj A= \left[\begin{array}{ccc}1&3&3\\1&4&3\\1&3&4\end{array}\right]\left[\begin{array}{ccc}7& - 3& - 3\\1&1&0\\1&0&1\end{array}\right] \\  \\  \implies\left[\begin{array}{ccc}7 - 3 - 3 \:  \: &3 + 3 + 0 \:  \: & - 3 + 0 + 3\\7 - 4 - 3 \:  &3 + 4 + 0& - 3 + 0 + 3\\7 - 3 - 4& - 3 + 3 + 0& - 3 + 0 + 4\end{array}\right] \\  \\  \implies\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] \\  \\  \\  \implies \: A = \left[\begin{array}{ccc}1&3&3\\1&4&3\\1&3&4\end{array}\right] \\  \\  \\  |A|  = 1(16 - 9) - 3(4 - 3) + 3(3 - 4) \\  \:  \:  \:  \:  \:  \:  = 7 - 3 - 3 = 1 \\  \\  \\  |A| .I = 1.\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] = \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \boxed{ {A}^{ - 1}  =  \frac{1}{ |A| } .adjA }\:  \\  \\  \\  =  \frac{1}{1}  \left[\begin{array}{ccc}7& - 3& - 3\\ - 1&1&0\\ - 1&0&1\end{array}\right] \\  \\  =  \left[\begin{array}{ccc}7& - 3& - 3\\ - 1&1&0\\ - 1&0&1\end{array}\right]

pratyush4211: Super
Swarnimkumar22: Thanks
Anonymous: nice coding :)
Swarnimkumar22: Thanks Bhai
Similar questions