Social Sciences, asked by Ruchadeshmukh1, 10 months ago

If a given DNA Strand has sequence AATTCCGG then write the complementary
sequence of the RNA strand​

Answers

Answered by Anonymous
2

Answer:

In DNA, there are four nitrogenous base options: adenine (A), thymine (T), cytosine (C) and guanine (G). Each base can only bond with one other, A with T and C with G. This is called the complementary base pairing rule or Chargaff's rule.

A complementary strand of DNA or RNA may be constructed based on nucleobase complementarity. Each base pair, A=T vs. ... Two strands of complementary sequence are referred to as sense and anti-sense. The sense strand is, generally, the transcribed sequence of DNA or the RNA that was generated in transcription.

In molecular biology, complementarity describes a relationship between two structures each following the lock-and-key principle. In nature complementarity is the base principle of DNA replication and transcription as it is a property shared between two DNA or RNA sequences, such that when they are aligned antiparallel to each other, the nucleotide bases at each position in the sequences will be complementary, much like looking in the mirror and seeing the reverse of things. This complementary base pairing allows cells to copy information from one generation to another and even find and repair damage to the information stored in the sequences.

The degree of complementarity between two nucleic acid strands may vary, from complete complementarity (each nucleotide is across from its opposite) to no complementarity (each nucleotide is not across from its opposite) and determines the stability of the sequences to be together. Furthermore, various DNA repair functions as well as regulatory functions are based on base pair complementarity. In biotechnology, the principle of base pair complementarity allows the generation of DNA hybrids between RNA and DNA, and opens the door to modern tools such as cDNA libraries. While most complementarity is seen between two separate strings of DNA or RNA, it is also possible for a sequence to have internal complementarity resulting in the sequence binding to itself in a folded configuration.

Attachments:
Similar questions