Math, asked by ryan333le, 9 months ago

If a > 0 and sec x = a + 1/4a , prove that sec x + tanx = 2a or 1/2a

Answers

Answered by Anonymous
16

Given that:;

secA = x + 1/4x 

we know that:-

1 + tan²A = sec²A 

tan²A = sec²A �� 1   

, tan²A = (x + 1/4x)² – 1                

                            

  => x² + 2 × x × 1/4x + 1/16x²-1               

                            

  = > x² + 1/2 + 1/16x² – 1                

                   

   => x²+ 1/16x² – 1/2                 

                           

  => (x – 1/4x)^2 

, tan²A = x – 1/4x or tan²A = - (x – 1/4x) 

put this value of secA and tanA in

the given equation( secA + tanA )

LHS = secA + tanA         

        

         = x + 1/4x + x – 1/4x         

         

         = 2x        

         

          = RHS 

Or 

LHS = secA + tanA        

        

         =x + 1/4x -x + 1/4x          

         

         = 2/4x          

         

         = 1/2x         

        

         = RHS 

Answered by gchandracommercial
1

Answer:

Given that:;  

secA = x + 1/4x  

we know that:-  

1 + tan²A = sec²A  

tan²A = sec²A �� 1

, tan²A = (x + 1/4x)² – 1

 => x² + 2 × x × 1/4x + 1/16x²-16x² – 1  

  => x²+ 1/16x² – 1/2        

 => (x – 1/4x)^2  

tan²A = x – 1/4x or tan²A = - (x – 1/4x)

put this value of secA and tanA in

the given equation( secA + tanA )  

LHS = secA + tanA        

        = x + 1/4x + x – 1/4x

        = 2x      

         = RHS  

Or  

LHS = secA + tanA

       =x + 1/4x -x + 1/4x  

= 2/4x        

        = 1/2x

        = RHS

MARK AS "BRAINIEST" ANSWER.

Similar questions