if a hexagon ABCDEF circumscribe a circle. prove that
AB+CD+EF=BC+DE+AF
Attachments:
![](https://hi-static.z-dn.net/files/d93/7549daef24bd5369a4509e190a0bf9a6.jpg)
Answers
Answered by
7
Sol:
Let ABCDEF be a hexagon.It is circumscribe a circle.
But length of the tangents drawn from a point to the circle are equal.
AM = AR -----(i)
BM = BN ---------(ii)
CN = CO ----------(iii)
DO = DP ----------(iv)
EP = EQ ----------(v)
FQ = FR --------- (vi)
adding (i) and (ii) we get
AM + BM = AR + BN
⇒ AB = AR + BN
adding (iii) and (iv) we get
CO + DO = CN + DP
⇒ CD = CN + DP
adding (v) and (vi) we get
EQ + FQ = EP + FR
⇒ EF = EP + FR
Adding all these we obtain
AB + CD + EF = AR + ( BN + CN ) + (DP + EP) + FR = BC + DE + FA
∴ AB + CD + EF = BC + DE + FA
Let ABCDEF be a hexagon.It is circumscribe a circle.
But length of the tangents drawn from a point to the circle are equal.
AM = AR -----(i)
BM = BN ---------(ii)
CN = CO ----------(iii)
DO = DP ----------(iv)
EP = EQ ----------(v)
FQ = FR --------- (vi)
adding (i) and (ii) we get
AM + BM = AR + BN
⇒ AB = AR + BN
adding (iii) and (iv) we get
CO + DO = CN + DP
⇒ CD = CN + DP
adding (v) and (vi) we get
EQ + FQ = EP + FR
⇒ EF = EP + FR
Adding all these we obtain
AB + CD + EF = AR + ( BN + CN ) + (DP + EP) + FR = BC + DE + FA
∴ AB + CD + EF = BC + DE + FA
Similar questions