Math, asked by jumbowidget3802, 6 months ago

If A=i+ 2j-3k and B=3i+j+2k ,show that A+B is perpendicular toA-B

Answers

Answered by BrainlyPopularman
49

GIVEN :

• Two vectors –

 \\ \bf \to  \:  \:  \overrightarrow{A}= \hat{i}+ 2 \hat{j}-3 \hat{k} \\

 \\ \bf \to  \:  \:  \overrightarrow{B}= 3\hat{i}+\hat{j}+2\hat{k} \\

TO PROVE :

 \\ \longrightarrow \:  \bf (\overrightarrow{A} + \overrightarrow{B}) \:  \: is \:  \:  perpendicular\:  \: to(\overrightarrow{A}  -  \overrightarrow{B})\\

SOLUTION :

• Two vectors are perpendicular if their vector product is zero.

• Add both vectors –

 \\ \implies \bf \overrightarrow{A} + \overrightarrow{B} =( \hat{i}+ 2 \hat{j}-3 \hat{k})+(3\hat{i}+\hat{j}+2\hat{k}) \\

 \\ \implies \bf \overrightarrow{A} + \overrightarrow{B} =( \hat{i}+3\hat{i}) + ( 2 \hat{j}+\hat{j}) + (-3 \hat{k}+2\hat{k}) \\

 \\ \implies \bf \overrightarrow{A} + \overrightarrow{B} =4\hat{i}+ 3\hat{j} - \hat{k} \\

• Now substract both vectors –

 \\ \implies \bf \overrightarrow{A}  -  \overrightarrow{B} =( \hat{i}+ 2 \hat{j}-3 \hat{k}) - (3\hat{i}+\hat{j}+2\hat{k}) \\

 \\ \implies \bf \overrightarrow{A}  - \overrightarrow{B} =( \hat{i} - 3\hat{i}) + ( 2 \hat{j} - \hat{j}) + (-3 \hat{k} - 2\hat{k}) \\

 \\ \implies \bf \overrightarrow{A}  - \overrightarrow{B} = - 2\hat{i}+ \hat{j} - 5\hat{k} \\

• Now –

 \\ \implies \bf(\overrightarrow{A} + \overrightarrow{B}).( \overrightarrow{A}  - \overrightarrow{B})=(4\hat{i}+ 3\hat{j} - \hat{k}).(- 2\hat{i}+ \hat{j} - 5\hat{k}) \\

 \\ \implies \bf(\overrightarrow{A} + \overrightarrow{B}).( \overrightarrow{A}  - \overrightarrow{B})=(4)( - 2) + (3)(1) + ( - 1)( - 5)\\

 \\ \implies \bf(\overrightarrow{A} + \overrightarrow{B}).( \overrightarrow{A}  - \overrightarrow{B})= - 8+3+5\\

 \\ \implies \bf(\overrightarrow{A} + \overrightarrow{B}).( \overrightarrow{A}  - \overrightarrow{B})= - 8+8\\

 \\ \large \implies{ \boxed{ \bf(\overrightarrow{A} + \overrightarrow{B}).( \overrightarrow{A}  - \overrightarrow{B})=0}}\\

 \\ \large \longrightarrow  { \boxed{ \boxed{ \bf Hence \:  \: Proved }}}\\

Similar questions