Math, asked by tanishkajadhav982, 2 months ago

If ¯a=i+2j , ¯b=2i+j , ¯c=4i+3j , find x and y such that ¯c=x¯a+y¯b​

Attachments:

Answers

Answered by kshreyank37
1

Step-by-step explanation:

here is your answer...hope it will help u

Attachments:
Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf\: Given-\begin{cases} &\sf{\vec{a} = \hat{i} + 2\hat{j}} \\ &\sf{\vec{b} = 2\hat{i} + \hat{j}}\\ &\sf{\vec{c} = 4\hat{i} + 3\hat{j}}\\ &\sf{\vec{c} = x\vec{a} + y\vec{b}} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:Find-\begin{cases} &\sf{value \: of \: x \: and \: y}\end{cases}\end{gathered}\end{gathered}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\vec{a} = \hat{i} + 2\hat{j}

\rm :\longmapsto\:\vec{b} = 2\hat{i} + \hat{j}

\rm :\longmapsto\:\vec{c} = 4\hat{i} + 3\hat{j}

and

\rm :\longmapsto\:\vec{c} = x\vec{a} + y\vec{b}

On substituting the values, we have

\rm :\longmapsto\:4\hat{i} + 3\hat{j} = x(\hat{i} + 2\hat{j}) + y(2\hat{i} + \hat{j})

\rm :\longmapsto\:4\hat{i} + 3\hat{j} = x\hat{i} + 2x\hat{j} + 2y\hat{i} + y\hat{j}

\rm :\longmapsto\:4\hat{i} + 3\hat{j} = (x + 2y)\hat{i} + (2x + y)\hat{j}

On comparing we get,

\rm :\longmapsto\:x + 2y = 4 \implies \: x = 4 - 2y -  - (1)

and

\rm :\longmapsto\:2x + y = 3

\rm :\longmapsto\:2(4 - 2y) + y = 3

\rm :\longmapsto\:8 - 4y + y = 3

\rm :\longmapsto\:8 - 3y = 3

\rm :\longmapsto\: - 3y = 3 - 8

\rm :\longmapsto\: - 3y = - 5

\rm :\implies\:y = \dfrac{5}{3}  -  -  - (2)

Put the value of y in equation (1), we get

\rm :\longmapsto\:x = 4 - 2 \times \dfrac{5}{3}

\rm :\longmapsto\:x = 4 - \dfrac{10}{3}

\rm :\longmapsto\:x =  \dfrac{12 - 10}{3}

\rm :\implies\:x =  \dfrac{2}{3}

 \red{\begin{gathered}\begin{gathered}\bf\: Hence-\begin{cases} &\sf{x = \dfrac{2}{3} } \\ &\sf{y = \dfrac{5}{3} } \end{cases}\end{gathered}\end{gathered}}

\boxed{\pink{\bf\:Additional \:  Information}}

 \sf \: Unit \: vector \: along \: \vec{a} = \dfrac{\vec{a}}{ |\vec{a}| }

 \sf \: If \: \vec{a} = x\hat{i} + y\hat{j} + z\hat{k} \: then \: direction \: ratios \: are \: (x, y, z)

 \sf \: If \: \vec{a} \parallel \: \vec{b} \: then \: \vec{a} = k \: \vec{b} \: and \: vice \: versa

 \sf \: If \: \vec{a} \perp\vec{b} \: then \: \vec{a}.\vec{b} = 0 \: and \: vice - versa

Similar questions