Math, asked by muhammedziyanu5095, 8 months ago

If a= i^ -3j^ +k^ and b= xi^+j^ -y k^ are parallel.find the values of x and y

Answers

Answered by BrainlyPopularman
8

GIVEN :

 \\ {\huge{.}} \: \bf a =  \hat{i} - 3 \hat{j} +  \hat{k} \\

  \\ {\huge{.}} \: \bf b =  x\hat{i}  + \hat{j}  - y \hat{k} \\

• a & b are parallel.

TO FIND :

• Value of 'x' & 'y' = ?

SOLUTION :

• We know that If two vectors a & b are parallel then –

  \\  \dashrightarrow \large \:{ \boxed{ \bf  \vec{a} \times \vec{ b} =0 }}\\

  \\ \implies \bf (\hat{i} - 3 \hat{j} +  \hat{k}) \times (x\hat{i}  + \hat{j}  - y \hat{k}) = 0\\

 \\  \implies\bf \left|\begin{array}{ccc} \bf \hat{i} & \bf \hat{j} &  \bf\hat{k}  \\ \\ \bf1 &  \bf3 & \bf1 \\  \\  \bf x& \bf1 & \bf - y \end{array}\right| = 0 \\

 \\  \implies\bf \hat{i} \{(3)( - y) - (1)(1) \} -  \hat{j} \{(1)( - y) - (1)(x) \} +  \hat{k} \{ (1)(1) - (3)(x)\} = 0 \\

 \\  \implies\bf \hat{i} (- 3y - 1)-  \hat{j} \{ - y-x \} +  \hat{k} \{ 1 - 3x\} = 0 \\

 \\  \implies\bf \hat{i} (- 3y - 1) +  \hat{j} \{ y+x \} +  \hat{k} \{ 1 - 3x\} = 0 \\

• We should write this as –

 \\  \implies\bf \hat{i} (- 3y - 1) +  \hat{j} \{ y+x \} +  \hat{k} \{ 1 - 3x\} = 0 \hat{i} + 0 \hat{j} + 0 \hat{k} \\

• Let's compare the coffieciant of  \:\: \bf \hat{i} \:\:

 \\  \implies\bf  - 3y - 1 = 0 \\

 \\  \implies\bf  3y +  1 = 0 \\

 \\  \implies \large{ \boxed{\bf  y =  \dfrac{ - 1}{3}}} \\

• Now compare the coffieciant of  \:\: \bf \hat{k} \:\:

 \\  \implies\bf 1 - 3x= 0 \\

 \\  \implies\bf 3x=1 \\

 \\  \implies \large{ \boxed{\bf x =  \dfrac{1}{3}}} \\

 \\ \rule{200}{4} \\

Similar questions