Math, asked by sparsharao, 7 days ago

If A→=i^+j^+k^ and B→=−i^−j^−k^. Then angle made by (A→−B→) with A→ is

Answers

Answered by pulakmath007
8

SOLUTION

GIVEN

 \vec{A} =  \hat{i} +  \hat{j} +  \hat{k} \:

 \vec{B} =  \hat{i}  -   \hat{j}  -   \hat{k} \:

TO DETERMINE

The angle made by  \vec{A}  - \vec{B} with  \vec{A}

EVALUATION

Here the given vectors are

 \vec{A} =  \hat{i} +  \hat{j} +  \hat{k} \:

 \vec{B} =  \hat{i}  -  \hat{j}  -  \hat{k} \:

Now

 \vec{A}   - \vec{B}

 = ( \hat{i} +  \hat{j} +  \hat{k} ) - ( \hat{i}  -  \hat{j}  -   \hat{k} \:  )

 = 2\hat{j} + 2 \hat{k}

Now

( \vec{A}   - \vec{B} ). \vec{A}

 = ( 2 \hat{j} +2  \hat{k} ) . ( \hat{i}   +  \hat{j}   +    \hat{k} \:  )

= 0 + 2 + 2

= 4

Let θ be the required angle

So we get

 \displaystyle \cos \theta =  \frac{( \vec{A}   - \vec{B} ). \vec{A}  }{ | ( \vec{A}   - \vec{B} ) || \vec{A} |  }

 \displaystyle  \implies \: \cos \theta =  \frac{4 }{  \sqrt{4 + 4}   \times  \sqrt{1 + 1 + 1}  }

 \displaystyle  \implies \: \cos \theta =  \frac{4 }{  \sqrt{8}   \times  \sqrt{3}  }

 \displaystyle  \implies \: \cos \theta =  \frac{4 }{ 2 \sqrt{2}   \times  \sqrt{3}  }

 \displaystyle  \implies \: \cos \theta =  \frac{2 }{  \sqrt{6}  }

 \displaystyle  \implies \:  \theta =  { \cos}^{ - 1}  \bigg( \frac{2}{ \sqrt{6} } \bigg)

FINAL ANSWER

Hence the required angle  \displaystyle  =  { \cos}^{ - 1}  \bigg( \frac{2}{ \sqrt{6} } \bigg)

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If two vectors are perpendicular to each other then which of these is zero

(a) scalar product or dot product (b) vector...

https://brainly.in/question/31020619

2. two vectors of magnitude 4 u and 3 u are such that their scalar product is zero. Find their resultant.

https://brainly.in/question/30302455

Similar questions