Math, asked by naveengnaveen4298, 1 year ago

If a=i+j+k ,b= 4i-2j+3k and c=i-2j+k find a vector of magnitude 6 units which is parallel to the vector 2a-b+3c

Answers

Answered by hukam0685
30

Answer:

2(\hat i  - 2 \hat j + 2\hat k) \\

Step-by-step explanation:

If a=i+j+k ,b= 4i-2j+3k and c=i-2j+k .

find a vector of magnitude 6 units which is parallel to the vector 2a-b+3c=r

vector parallel to

 \vec r=2 \vec a - \vec b + 3\vec c \\  \\  = 2( \hat i + \hat j + \hat k) - ( 4\hat i  - 2 \hat j +3 \hat k) + 3( \hat i  - 2 \hat j + \hat k) \\  \\  = 2 \hat i + 2\hat j +2 \hat k -4 \hat i + 2\hat j  - 3 \hat k + 3\hat i - 6 \hat j +3 \hat k \\  \\  \vec r =  \hat i  - 2 \hat j + 2\hat k \\  \\

Unit vector in direction of parallel vector

 =  \frac{ \vec r}{ |\vec r| }  \\  \\  =  \frac{ \hat i  - 2 \hat j + 2\hat k}{ \sqrt{1 + 4 + 4} }  \\  \\  =  \frac{1}{3} (\hat i  - 2 \hat j + 2\hat k) \\  \\

Vector parallel to given vectors having magnitude 6

=6 \times  \frac{1}{3}( \hat i  - 2 \hat j + 2\hat k) \\  \\  = 2(\hat i  - 2 \hat j + 2\hat k) \\\\or\\  \\=2\hat i  - 4 \hat j + 4\hat k

Hope it helps you.

Similar questions