Math, asked by manojmahato903177, 7 months ago

if a-ib = 3-4i/3+4i, then find a²+b²​

Answers

Answered by Mihir1001
12

\huge{\underline{\bf\red{QuestiØn} :}}

 \sf If \:  \boxed{a - ib =  \frac{3 - 4i}{3 + 4i} } , \\  \sf then \: find \:  {a}^{2}  +  {b}^{2} .

\huge{\underline{\bf\blue{SolutiØn}\ :}}

We have,

\begin{aligned}  \\ \quad a - ib & =  \frac{3 - 4i}{3 + 4i}  \\  \\  & = \frac{3 - 4i}{3 + 4i} \times  \frac{3 - 4i}{3 - 4i}  \\  \\   & =  \frac{ {(3 - 4i)}^{2} }{(3 - 4i)(3 + 4i)}  \\  \\  & =  \frac{ {(3)}^{2} +  {(4i)}^{2}  - 2(3)(4i) }{ {(3)}^{2}  -  {(4i)}^{2} } \\  \\   & =  \frac{9 + 16( {i}^{2} ) - 24i}{9 - 16( {i}^{2} )}  \\  \\  & = \frac{9 + 16( - 1) - 24i}{9 - 16( - 1)}  \\  \\  & =  \frac{9 - 16 - 24i}{9 + 16}   \\  \\ & =  \frac{ - 7 - 24i}{25}  \\  \\  \implies a - ib & = \bigg( - \frac{7}{25} \bigg)  - \bigg( \frac{24}{25}  \bigg)i \end{aligned}

On comparing both the sides, we get :

  •  \boxed{a =  -  \frac{7}{25} }

  •  \boxed{b = \ \: \: \ \frac{24}{25} }

HENCE,

\begin{aligned} \\ a^2 + b^2 & = { \bigg( - \dfrac{7}{25} \bigg) }^{2} + { \bigg( \dfrac{24}{25} \bigg) }^{2} \\ \\ & = \dfrac{49}{625} + \dfrac{576}{625} \\ \\ & = \dfrac{49 + 576}{625} \\ \\ & = \dfrac{625}{625} \\ \\ & = \cancel{ \dfrac{625}{625} } \\ \\ & = 1 & & & & \end{aligned}

\red{\rule{5.5cm}{0.02cm}}

\Large{ \mid {\underline{\underline{\bf\green{BrainLiest \ AnswEr}}}} \mid }

Similar questions