Math, asked by Lazarus, 11 months ago

If a-ib/a+ib=1+i/1-i,then prove that a+b=0. ANSWER ONLY IF YOU KNOW!(RELATED TO COMPLEX NUMBERS) PLS HELP..​

Attachments:

Answers

Answered by ihrishi
15

Step-by-step explanation:

 \frac{a - ib}{a  +  ib}  =  \frac{1 + i}{1  -  i}  \\  \frac{a - ib}{a  +  ib}  \times  \frac{a - ib}{a - ib}  =  \frac{1 + i}{1  -  i} \times  \frac{1 + i}{1 + i} \\(Rationalising\: the \:denominators\: of \\\:both \:sides) \\  \frac{(a - ib)^{2} }{(a) ^{2}  - (ib)^{2} }  = \frac{(1 + i) ^{2} }{(1)^{2}   -  (i)^{2}}  \\  \frac{ {a}^{2}  + (i)^{2}(b)^{2} - 2 \times a \times ib}{ {a}^{2} -  {i}^{2}  {b}^{2}  }  =  \frac{1 +  {i}^{2}  + 2i}{1 - ( - 1)}\\... (\because i^2 = - 1)\\  \frac{ {a}^{2}  -  {b}^{2}  - 2abi}{ {a}^{2} +  {b}^{2}  }  =  \frac{1 - 1 + 2i}{1 + 1}  \\  \frac{ {a}^{2}  -  {b}^{2} - 2abi }{ {a}^{2}  + b^{2} }  =  \frac{2i}{2} \\  \frac{ {a}^{2}  -  {b}^{2} - 2abi }{ {a}^{2}  + b^{2} }  =  i \\  \therefore \: {a}^{2}  -  {b}^{2} - 2abi  = i( {a}^{2}  +  {b}^{2}) \\\therefore \: {a}^{2}  -  {b}^{2} - 2abi  =0 + i( {a}^{2}  +  {b}^{2}) \\ Equating \: real \: and \: imaginary \: \\  parts \: from \: both \: sides :   \\ {a}^{2}  -  {b}^{2} = 0 \\  {a}^{2}  +  {b}^{2} =  - 2ab...(1) \\  \because \:  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab....(2) \\ \therefore \: from \: equations \: (1) \: and \: (2) \\ {(a + b)}^{2}  =  - 2ab  + 2ab\\  \implies \: {(a + b)}^{2}  = 0 \\ \implies \: {a + b}  = 0 \\ Thus \: Proved.

Similar questions