Math, asked by divyanithamed, 1 year ago

if a+ib= c+i / c-i , where c is real part prove that a square + b square =1 and b / a =2c / c square-1

Answers

Answered by KomalGoel
36
this is the solution of ue problem
Attachments:
Answered by mysticd
6

\blue { a }+ i \pink {b} = \frac{c+i}{c-i} \: (given )

 = \frac{(c+i)(c+i)}{(c-i)(c+i)} \\= \frac{(c+i)^{2}}{c^{2} - i^{2} } \\= \frac{c^{2} + i^{2} + 2 \times c \times i }{c^{2} + 1 }

 = \frac{c^{2} - 1 + 2ic }{ c^{2} + 1 } \\= \blue {\frac{(c^{2}-1)}{c^{2}+1} }+ \pink {\frac{2c}{c^{2}+1}} i

/* Compare bothsides ,we get */

 \blue {a = \frac{(c^{2}-1)}{c^{2}+1} } ,\pink {b = \frac{2c}{c^{2}+1}}

 \red{ a^{2} + b^{2} } \\= \Big(  \frac{c^{2}-1}{c^{2}+1}\Big)^{2} +\Big( \frac{2c}{c^{2}+1}\Big)^{2}

 = \frac{ c^{4} - 2c^{2}+1 + 4c^{2}}{ (c^{2}+1)^{2}}

 = \frac{ c^{4} +2c^{2}+1 }{ (c^{2}+1)^{2}}

 = \frac{ (c^{2} + 1 )^{2}}{ (c^{2}+1)^{2}}\\= \green {1} \: --(1)

 \red{ ii ) \frac{b}{a} } \\= \frac{\frac{2c}{c^{2}+1}} {\frac{(c^{2}-1}{c^{2}+1}}\\= \green {\frac{2c}{c^{2} - 1 } } \: --(2)

•••♪

Similar questions