Math, asked by arya1718nadankar, 7 months ago

if (a+ib) (c+id)(x+iy)=m+in​

Answers

Answered by jangir2000harsh
0

Answer:

yyfzyzyrzgx,igcochhicohciyc

Answered by divyansh635814
0

Answer:

It is given that x+iy = \sqrt{\frac{a+ib}{c+id}}x+iy=

c+id

a+ib

(Equation 1)

We have to prove that (x^2+y^2)^2 = \frac{a^2+b^2}{c^2+d^2}(x

2

+y

2

)

2

=

c

2

+d

2

a

2

+b

2

Consider the conjugate of x+iy,

So, x-iy = \sqrt{\frac{a-ib}{c-id}}x−iy=

c−id

a−ib

(Equation 2)

Multiplying equation 1 by 2, we get

(x+iy)(x-iy) =\sqrt{\frac{a+ib}{c+id}} \sqrt{\frac{a-ib}{c-id}}(x+iy)(x−iy)=

c+id

a+ib

c−id

a−ib

x^2+y^2 =\sqrt{\frac{(a+ib)(a-ib)}{(c+id)(c-id)}

x^2+y^2 =\sqrt{\frac{a^2-(ib)^2}{c^2-(id)^2}}x

2

+y

2

=

c

2

−(id)

2

a

2

−(ib)

2

x^2+y^2 =\sqrt{\frac{a^2+b^2}{c^2+d^2}}x

2

+y

2

=

c

2

+d

2

a

2

+b

2

Squaring on both the sides, we get

(x^2+y^2)^2 =\sqrt{(\frac{a^2+b^2}{c^2+d^2})}^2(x

2

+y

2

)

2

=

(

c

2

+d

2

a

2

+b

2

)

2

Therefore, (x^2+y^2)^2 =(\frac{a^2+b^2}{c^2+d^2})(x

2

+y

2

)

2

=(

c

2

+d

2

a

2

+b

2

)

Hence, proved.

Similar questions