Math, asked by gm23040512, 17 days ago

(If A is a 3rd order matrix, such that det. A is 2, then det. (3A^2) is​

Answers

Answered by mathdude500
20

 \green{\large\underline{\sf{Given- }}}

A is a square matrix of order 3 × 3 such that |A| = 2

 \purple{\large\underline{\sf{To\:Find - }}}

\rm \:  |3 {A}^{2} |

 \red{\large\underline{\sf{Solution-}}}

Given that,

A is a square matrix of order 3 × 3 such that |A| = 2

Now, Consider

\rm \:  |3 {A}^{2} |

We know,

\boxed{\tt{  \:  \:  |kA|  \:  =  \:  {k}^{n} \:  |A|  \:  \: }} \\

So, using this result, we get

\rm \:  =  \:  {3}^{3} \:  | {A}^{2} |

can be rewritten as

\rm \:  =  \: 27 |A.A|

We know

\boxed{\tt{  \:  \:  |AB| \:  =  \:  |A| \:  |B|  \: }} \\

So, using this result, we get

\rm \:  =  \: 27 \:  |A| \:  |A|

\rm \:  =  \: 27 \times 2 \times 2

\rm \:  =  \: 108

Hence,

\rm\implies \:\boxed{\tt{  \:  |3 \:  {A}^{2} |  \:  =  \: 108 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{  \:  |adj \: A|  =  { |A| }^{n - 1} \: }} \\

\boxed{\tt{  \:  |adj(adjA|  =  { |A| }^{ {(n - 1)}^{2} }  \:  \: }} \\

\boxed{\tt{  \:  | {A}^{ - 1} | \:  =  \: \dfrac{1}{ |A| }  \: }} \\

\boxed{\tt{  \:  |A'|  =  |A| \: }} \\

\boxed{\tt{  \: A \: is \: singular \: matrix \: iff \:  |A|  = 0 \: }} \\

\boxed{\tt{  \:  {A}^{ - 1}  \: doesnot \: exist \: if \:  |A|  = 0 \: }} \\

\boxed{\tt{  \: adj(adjA) \:  =  \:  { |A| }^{n - 2} \: A \: }} \\

\boxed{\tt{  \: adj(AB) = (adjB) \: (adjA) \: }} \\


Steph0303: 'n' refers to the order of matrix. Since it. 3 x 3 matrix, n = 3 in the formula.
Answered by TheBestWriter
5

 \green{  \underline{\sf \: Given -} } \\  \\  \sf \:  \: A \: is \: A \: square \: mathrix \: of \: order \: 3 \times 3 \\  \sf \: such \: that \:  |A|  \\  \\   \purple { \sf \underline{ \: To \: Find}} \\  \\  \tt \: |3 {A}^{2} |  \\  \\  \red{ \sf \underline{solution}} \\  \\  \sf \: Given \: that \\  \sf \: A\: is \: A \: square \: matrix \: of \: order \\  \sf \: 3 \times 3 \: such \: that |a|  = 2 \\  \\  \sf \: Now ,\: consider \\  \\  \tt |3 {a}^{2} | \\  \\  \sf We \: know \\  \\  \boxed{ \tt \:  |KA| =  {K}^{3}   |A| }  \\  \\  \sf \: so \:  \bold{using \: this \: result} \:  \: we \: get \\  \\  =  \sf \:  {3}^{3}  | {A}^{2} |  \\  \\  \sf \: can \bold{ \: Be \: rewritten} \: as \\  =  \sf \: 27 |A.A|  \\ \sf \: we \: know \:  \\  \boxed{ \tt |AB|  =  |A|  |B| } \\  \\  \sf \: so \:  \bold{Using \: the \: result} \: we \: get \\  \\  =  \sf27 |A|  |A|  \\  = 27 \times 2 \times 2 \\  = 108 \\  \\  \bold{ \tt \: Hence} \\  \\  : \to \boxed{ \tt \:  |3 {A}^{2} | = 108 }

Similar questions