Math, asked by vedasi, 1 year ago

If a is a complex no. such that, |z| greater than or equal to 2, then the minimum value of |z+1/2| is
a. Strictly greatest than 5/2
b. Greater than 3/2 but less than 5/2
c. Equal to 5/2
d. Lies in the interval (1,2)

Answers

Answered by ItSdHrUvSiNgH
0

Step-by-step explanation:

z \geqslant 2 \\ (z +  \frac{1}{2} ) \\  (\geqslant 2 +  \frac{1}{2} ) \\ if \: you \: observe \: it \: correctly \: we \: can \: easily \: conclude => \\ \: it \: is \: \geqslant \:   \frac{5}{2} \\ so \: option \: (a) \: is \: correct

Answered by IamIronMan0
1

Answer:

Option d

Let

z = a \cos( \alpha )  +a i \sin(  \alpha ) ) \\  |z|  = a \:  \geqslant 2 \\  z +  \frac{1}{2}  =( a \cos( \alpha )   +  \frac{1}{2} )+a i \sin(  \alpha ) ) \\  |z +  \frac{1}{2} |  =  \sqrt{(a \cos( \alpha )  +  \frac{1}{2}) {}^{2}  +  {(a \sin( \alpha )) }^{2}  }  \\  |z +  \frac{1}{2} |  =  \sqrt{a {}^{2}  \cos {}^{2} ( \alpha )  +  \frac{1}{4}   +  {(a \sin( \alpha )) }^{2}  + a \cos( \alpha )  } \\  |z +  \frac{1}{2} |  =  \sqrt{ {a}^{2} +  \frac{1}{4}   + a \cos( \alpha )  }

For minimum value alpha should be

90 or cos 90 = 0

**(You could also put this value in start to reduce calculations)

So

min |z +  \frac{1}{2} |  =  \sqrt{ {a}^{2}  +  \frac{1}{4} }  \\ since \:  \:  \:  \:  \: a \geqslant 2 \\  min |z +  \frac{1}{2} |  \geqslant  \sqrt{ {2}^{2} +  \frac{1}{4}  }  =  \frac{3}{2}

Similar questions