Math, asked by Anju98271, 1 day ago

If A is a non-singular square matrix of order 3 such that |A| = 3, then value of |2AT| is

Answers

Answered by mathdude500
7

\large\underline{\sf{Given- }}

A is a non singular matrix of order 3, such that |A| = 3

\large\underline{\sf{To\:Find - }}

\rm \:  |2 {A}^{T} |

\large\underline{\sf{Solution-}}

Given that,

A is a non - singular matrix of order 3 such that |A| = 3

Now, Consider

\rm \:  |2 {A}^{T} |

We know, In A is a square matrix of order n and k is non zero real number, then

\boxed{\sf{  \:  \:  |kA|  \:  =  \:  {k}^{n} |A|  \:  \: }} \\

So, using this result, we get

\rm \:  =  \:  {2}^{3} | {A}^{T} |  \\

We know, if A is a square matrix of order n, then

\boxed{\tt{  \:  \:  | {A}^{T} |  =  |A|  \:  \: }} \\

So, using this, we get

\rm \:  =  \: 8 |A|  \\

\rm \:  =  \: 8 \times 3  \\

\rm \:  =  \: 24  \\

Hence,

\rm\implies \: |2 {A}^{T} |  = 24 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

If A is a square matrix of order n, then

\rm \:  |adjA|  \:  =  \:  { |A| }^{n - 1}  \\

\rm \:  |A \: adjA|  \:  =  \:  { |A| }^{n}  \\

\rm \: adj(adjA) =  { |A| }^{n - 2} \: A \\

\rm \: adj(adjA) =  { |A| }^{(n - 1)^{2} }  \\

\rm \: A \: is \: singular \: matrix, \: \rm\implies \: |A|  = 0 \\

\rm \: A \: is \: non \:  -  \: singular \: matrix, \: \rm\implies \: |A|  \ne 0 \\

\rm \:  {A}^{ - 1} \: exist  \: \rm\implies \: |A|  \ne 0 \\

\rm \:  | {A}^{ - 1} |  =  \dfrac{1}{ |A| }  \\

\rm \:  |AB|  =  |A|  \:  |B|  \\

\rm \:  | {A}^{n} |  =  { |A| }^{n}  \\

Similar questions