If A is a square matrix such that A^2=A find the value of 7A-(I+A)^3
Answers
Answer:
- I
Step-by-step explanation:
Given --->
----------
A is a square matrix and
A²=A
Find--->
--------
value of the
7A - (I + A) ³
solution ---->
--------------
7A - ( I + A)³
we have a identity
(a+b)³=a³ + b³ + 3 a b ( a + b) applying it
=7A-{(I)³ +( A)³ + 3 I A(I + A)}
=7A-(I³ + A³ + 3 I²A + 3 I A²)
using A²=A
=7A-(I² I + A²A + 3 I A + 3 I A)
Using A²=A
=7A-(I .I + A A +3 A + 3A)
using A²= A
=7A-(I + A²+3 A +3A)
=7A-(I + A + 6A)
=7A - (I +7A)
=7A - I - 7A
=7A-7A - I
7A and (-7A) is equal to zero matrix
= 0 - I
= -I
where I is equal to identity matrix of same order as that of A
Additional information ---->
------------------------------------
(1).identity matrix is scalar matrix which has identity as a element in its main diagonal
(2). it is represented by I
(3). I. I=I and I. A=A
Answer:
Step-by-step explanation:
given A2=A
7A−(I+A)³=7A−[I³+3A²I+3AI²+A³]
=7A−[I+3A+3A+A².A]
=7A−[I+3A+3A+A]
=7A−I+7A
=−I