Math, asked by Anonymous, 10 months ago

If A is a square matrix such that A² = A, then write the value of 7A - (I + A)³ where I is an identity matrix.​

Answers

Answered by Anonymous
42

Answer:

&lt;marquee&gt;<strong>VALUE</strong>  <strong>O</strong><strong>F</strong><strong> </strong>--&gt;7A - ( l + A )³  =&lt;/marquee&gt;

\boxed{= 7A - (l³+A³+ 3 x l² x A + 3x l x A³)}

= 7A - (l³+A³+ 3 x l² x A + 3x l x A³)

= 7A- ( l + A³+ 3A + 3A² )

= 7A - ( l x A x A² + 3A + 3A² )

Coz ...A²= A

= 7A - ( l + A x A + 3A +3A )

= 7A - ( l + A² + 3A + 3A )

= 7A - ( l + A + 6A )

= 7A - ( l + 7A )

= 7A - l - 7A

\bold{\huge{\fbox{\color{green}{= -l}}}}

Answered by Anonymous
2

Answer:

given A2=A

7A−(I+A)3=7A−[I3+3A2I+3AI2+A3]

=7A−[I+3A+3A+A2.A]

=7A−[I+3A+3A+A]

=7A−I+7A

=−I

Similar questions