If A is a square matrix such that A2=A, then write the value of 7A−(I+A)3 where I is an identity matrix.
Answers
Answered by
1
Answer:
given A2=A
7A−(I+A)3=7A−[I3+3A2I+3AI2+A3]
=7A−[I+3A+3A+A2.A]
=7A−[I+3A+3A+A]
=7A−I+7A
=−I
Answered by
0
Answer:
7a - (i + a)³ = -i
Step-by-step explanation:
Given: a² = a
7a - (i + a)³
⇒ 7a - (i³ + a³ + 3 * i² * a + 3 * a * i²)
⇒ 7a - (i + a³ + 3a + 3a²)
⇒ 7a - (i + a * a² + 3a + 3a²)
⇒ 7a - (i + a * a + 3a + 3a) [∵ a² = a]
⇒ 7a - (i + a² + 6a)
⇒ 7a - (i + a + 6a)
⇒ 7a - (i + 7a)
⇒ 7a - i - 7a
⇒ -i
Therefore,
7a - (i + a)³ = -i
Hope it helps!
Similar questions