Math, asked by Rishant, 1 year ago

if a is a unit vector and (x+a).(x-a)=15, then find |x|. please consider x as a vector. |x|means magnitude of vector.

Attachments:

Answers

Answered by subhraghosh
7
it will help u..... I hope
Attachments:
Answered by amirgraveiens
5

|\vec{x}|=4

Step-by-step explanation:

Given:

\vec{a} is a unit vector

So \vec{a} is a magnitude of 1.

|\vec{a}| = 1

We have,

(\vec{x}+\vec{a}) \cdot (\vec{x}-\vec{a}) = 15

\vec{x}\cdot\vec{x}-\vec{x}\cdot\vec{a}+\vec{a}\cdot\vec{x}-\vec{a}\cdot\vec{a}=15

\vec{x}\cdot\vec{x}-\vec{x}\cdot\vec{a}+\vec{x}\cdot\vec{a}-\vec{a}\cdot\vec{a}=15      [property, \vec{x}\cdot\vec{a} = \vec{a}\cdot\vec{x} ]

\vec{x}\cdot\vec{x}-\vec{a}\cdot\vec{a}=15  

|\vec{x}|^2- |\vec{a}|^2=15           [property,  \vec{x}\cdot\vec{x} =|\vec{x}|^2 ]

|\vec{x}|^2- (1)^2=15      [given |\vec{a}| = 1]

|\vec{x}|^2- 1=15

|\vec{x}|^2=15+1

|\vec{x}|^2=16

|\vec{x}|=\pm\sqrt{16}

|\vec{x}|=\pm4

We know that magnitude is not negative,

Therefore, |\vec{x}|=4

Similar questions