Math, asked by mkshaikh2000, 11 months ago

if A is acute angle , cotA+cosecA=3 then sinA=?​

Answers

Answered by MaheswariS
2

\textbf{Given:}

cotA+cosecA=3

\implies\displaystyle\frac{cosA}{sinA}+\frac{1}{sinA}=3

\implies\displaystyle\frac{1+cosA}{sinA}=3

\implies\displaystyle\frac{1+cosA}{sinA}=3

\implies\displaystyle\frac{1+2cos^2\frac{A}{2}-1}{2\;sin\frac{A}{2}\;cos\frac{A}{2}}=3

\implies\displaystyle\frac{2cos^2\frac{A}{2}}{2\;sin\frac{A}{2}\;cos\frac{A}{2}}=3

\implies\displaystyle\frac{cos\frac{A}{2}}{sin\frac{A}{2}}=3

\implies\displaystyle\;cot\frac{A}{2}=3

\text{Taking reciprocal on bothsides, we get}

\displaystyle\;tan\frac{A}{2}=\frac{1}{3}

\text{Now,}

sinA=\displaystyle\frac{2\;tan\frac{A}{2}}{1+tan^2\frac{A}{2}}

sinA=\displaystyle\frac{2(\frac{1}{3})}{1+\frac{1}{9}}

sinA=\displaystyle\frac{\frac{2}{3}}{\frac{10}{9}}

sinA=\displaystyle\frac{\frac{2}{3}}{\frac{10}{9}}

sinA=\displaystyle\frac{2}{3}{\times}\frac{9}{10}

sinA=\displaystyle\frac{1}{1}{\times}\frac{3}{5}

\therefore\bf\;sinA=\displaystyle\frac{3}{5}

Find more:

If 6 tan A -5 = 0 find the value of( 3 Sin A - Cos A) / (5 Cos A + 9 sin A)

https://brainly.in/question/5331430

Similar questions