Math, asked by ighneesh87, 1 year ago

if A is an identity matrix of order 3 , then it's inverse is ​

Answers

Answered by MaheswariS
8

Answer:

A^{-1}=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

Step-by-step explanation:

Formula used:

The inverse of a square A is

\frac{1}{|A|}(adjA)

Given:

A=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

|A|=1(1-0)-0(0-0)+0(0-0)

|A|=1\neq0

Therefore,

A^{-1} exists

Cofactor matrix of A

=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

adjoint of A = Transpose of cofactor matrix of A

adjA=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

Now,

A^{-1}=\frac{1}{|A|}(adjA)

A^{-1}=\frac{1}{1}\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

A^{-1}=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

Similar questions