Math, asked by singhsaab2005, 1 month ago

if A is an investible matrix of order 3 and detA=2, then del (A-1) equals​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

A is a square matrix of order 3 such that | A | = 3

Now,

We know that

\rm :\longmapsto\: {AA}^{ - 1} = I

Taking determinant om both sides, we get

\rm :\longmapsto\: | {AA}^{ - 1} | =  |I|

We know,

 \boxed{ \bf{ \:  |AB| =  |A| \:  |B|}}

and

 \boxed{ \bf{ \:  |I| = 1}}

So, using this property, we get

\rm :\longmapsto\: |A| \:  | {A}^{ - 1} |  = 1

\bf\implies \: | {A}^{ - 1} | = \dfrac{1}{ |A| }

\bf\implies \: | {A}^{ - 1} | = \dfrac{1}{2}

Additional Information -

 \boxed{ \bf{ \:  |adjA| =  { |A| }^{n - 1}}}

 \boxed{ \bf{ \:  |AadjA| =  { |A| }^{n}}}

 \boxed{ \bf{ \:  |kA|  \:  =  \:  {k}^{n} \:  |A| }}

 \boxed{ \bf{ \:  |kAB|  \:  =  \:  {k}^{n} \:  |A| \:  |B|  }}

 \boxed{ \bf{ \:  |A| =  | {A}^{T} | }}

Similar questions