Math, asked by goraghumman7712, 8 months ago

if A is an obtuse angle whose sine is 5/13 and B is an acute angle whose tangent is 3/4 without using tables find values of sin2B and tan (A-B) ​

Answers

Answered by MaheswariS
7

\textbf{Given:}

sinA=\dfrac{5}{13}

tanB=\dfrac{3}{4}

\textbf{To find:}

\text{The values of $sin2B$ and $tan(A-B)$}

\textbf{Solution:}

\text{Consider,}

cos^2A=1-sin^2A

cos^2A=1-\dfrac{25}{169}

cos^2A=\dfrac{144}{169}

cosA=\pm\dfrac{12}{13}

\text{Since A lies in second quadrant, we have}

cosA=\dfrac{-12}{13}

tanA=\dfrac{sinA}{cosA}

tanA=\dfrac{5/13}{-12/13}

tanA=\dfrac{-5}{12}

\text{Now,}

sin2B

=\dfrac{2\,tanB}{1+tan^2B}

=\dfrac{2(\frac{3}{4})}{1+\frac{9}{16}}

=\dfrac{\frac{6}{4}}{\frac{25}{16}}

=\dfrac{3}{2}{\times}\dfrac{16}{25}

=\dfrac{3}{1}{\times}\dfrac{8}{25}

=\dfrac{8}{25}

\implies\boxed{\bf\,sin2B=\dfrac{8}{25}}

tan(A-B)

=\dfrac{tanA-tanB}{1+tanA\,tanB}

=\dfrac{\frac{-5}{12}-\frac{3}{4}}{1+(\frac{-5}{12})(\frac{3}{4})}

=\dfrac{\frac{-5-9}{12}}{1+(\frac{-5}{4})(\frac{1}{4})}

=\dfrac{\frac{-14}{12}}{1-\frac{5}{16}}

=\dfrac{\frac{-7}{6}}{\frac{11}{16}}

=\dfrac{-7}{6}{\times}\dfrac{16}{11}

=\dfrac{-7}{3}{\times}\dfrac{8}{11}

=\dfrac{-56}{33}

\implies\boxed{\bf\,tan(A-B)=\dfrac{-56}{33}}

Find more:

If a is the fourth quadrant and cos a = 5/13 then find the value of 13sin a + 5 sec a / 5 tan a + 6 cosec a​

https://brainly.in/question/19832496

If tan alpha = -2 find the values of sin alpha (alpha lies in 2 quadrant)

https://brainly.in/question/15261603

Answered by knjroopa
1

Step-by-step explanation:

Given if A is an obtuse angle whose sine is 5/13 and B is an acute angle whose tangent is 3/4 without using tables find values of sin 2B and tan (A-B) ​

  • Given Sin A = 5/13 , tan B = ¾
  • So we have by Pythagoras theorem, AC^2 = AB^2 + BC^2
  • So tan B = ¾ = opposite / adjacent
  • So AC^2 = 3^2 + 4^2
  •                = 9 + 16
  •                = 25
  • Or AC = 5  
  • So hypotenuse = 5
  • Now we have Sin B = 3/5 = opposite / hypotenuse.
  • Also cos B = 4/5 = Adjacent / hypotenuse.  
  •  We have  Sin 2 B = 2 Sin B Cos B
  •              = 2 x 3/5 x 4/5
  •             = 24 / 25
  • Now we have Sin A = 5/13
  • So we can write Cos A = √1 – sin^2 A
  •                = √1 – (5/13)^2
  •               = √1 – 25 / 169
  •              = √169 – 25 / 169
  •                              = √144 / 169
  •                             = 12 / 13
  • Now Sin A = 5/13 and Cos A = 12/13
  • Therefore we get tan A = Sin A / Cos A
  •                          = 5/13 / 12 / 13
  •                           = 5/12
  • Also tan B = 3/4  
  • So we have tan A – B = tan A – tan B / 1 + tan A tan B
  •                                     = 5/12 – ¾ / 1 + 5/12 x ¾  
  •                                      = 5 – 9 / 12 / 1 + 5 / 16
  •          By taking LCM we get = - 4/12 / 16 + 5 / 16
  •             = Simplifying we get = - 1/3 / 21 / 16
  •                                        = - 16 / 63
  •              So tan A – B = - 16 / 63

Reference link will be

https://brainly.in/question/17911896

Similar questions