Math, asked by satyachaitanya, 11 months ago

if a is equal to 2 + root 3 find a square + 1 by a square​

Answers

Answered by Anonymous
2

Answer:

hope it helps you...........

Attachments:
Answered by LovelyG
5

Answer:

14

Step-by-step explanation:

Given that ;

 \sf a = 2 +  \sqrt{3}

Now, find the value of 1/a.

 \sf \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }  \\  \\ \sf \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\ \sf \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{(2) {}^{2} - ( \sqrt{3}) {}^{2} }  \\  \\ \sf \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\ \sf \frac{1}{a}  = 2 -  \sqrt{3}

Find the value of a + (1/a);

 \implies \sf a + \frac{1}{a}  = 2 +  \sqrt{3} + 2 -  \sqrt{3}   \\  \\ \implies \sf a + \frac{1}{a}  =2 + 2 \\  \\ \implies \sf a + \frac{1}{a}  = 4

On squaring both sides ;

\sf (a + \frac{1}{a}) {}^{2}   = (4)^{2}  \\  \\ \implies \sf  {a}^{2}  + \frac{1}{a {}^{2} } + 2 \:.  \:a  \: . \:  \frac{1}{a}  = 16 \\  \\ \\ \implies \sf  {a}^{2}  + \frac{1}{a {}^{2} }  + 2 = 16 \\  \\ \\ \implies \sf  {a}^{2}  + \frac{1}{a {}^{2} }  = 16 - 2 \\  \\ \\ \boxed{ \bf \therefore \:   {a}^{2}  + \frac{1}{a {}^{2} }  = 14}

Similar questions