Math, asked by yash02505, 1 year ago

if a is equal to 3 + square root 52 then find a square + 1 upon a square​

Answers

Answered by amankumaraman11
3

a = 3 +  \sqrt{52}  \\  \\  \frac{1}{a}  =  \frac{1}{3 +  \sqrt{52} }  \times  \frac{3 -  \sqrt{52} }{3 -  \sqrt{52} }  \\  \\ \:  \:  \:  \:  \:   =  \frac{3 -  \sqrt{52} }{9 - 52}  =  \frac{3 -  \sqrt{52} }{ - 43}

Now,

 {a}^{2}  +   \frac{1}{ {a}^{2} } \\  \\  =  {(3 +  \sqrt{52} )}^{2}  +  {( \frac{3 - \sqrt{52}  }{ - 43} )}^{2}  \\  \\ =  (9 + 52 + 6 \sqrt{52} )( \frac{9 + 52 - 6 \sqrt{52} }{1849} ) \\  \\  = (61 + 6 \sqrt{52} )( \frac{61 - 6 \sqrt{52} }{1849} ) \\  \\  =  \frac{ {(61)}^{2} -  {(6 \sqrt{52} )}^{2}  }{1849}  \\  \\  =  \frac{3721 - 1872}{1849}  \\  \\  =  \frac{1849}{1849}  = 1

Similar questions