Math, asked by manoj7233, 1 year ago

if a is equal to 3 + under root 8 find the value of A square + 1 upon S square​

Answers

Answered by LovelyG
0

Answer:

\sf a = 3 +  \sqrt{8}  \\  \\ \sf a = 3 + 2 \sqrt{2}  \\  \\ \sf  \frac{1}{a}  =  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  \\ \sf  \frac{1 }{a}  =  \frac{3 - 2 \sqrt{2} }{(3) {}^{2} - 2 \sqrt{2}) {}^{2} }  \\  \\ \sf  \frac{1}{a}  = 3 - 2 \sqrt{2}  \\  \\ \sf a +  \frac{1}{a}  = 3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2}  \\  \\ \sf a +  \frac{1}{a}  = 3 + 3 \\  \\ \sf a +  \frac{1}{a}  = 6 \\  \\ \bf squaring \: both \: sides -  \\  \\ \sf ( a + \frac{1}{a} ) {}^{2}  = (6) {}^{2}  \\  \\ \sf a {}^{2}  +  \frac{1}{a {}^{2} }  + 2 = 36 \\  \\ \sf a {}^{2}  +  \frac{1}{a {}^{2} } = 36 - 2 \\  \\ \boxed{ \red{ \tt a {}^{2}  +  \frac{1}{a {}^{2} } = 34}}

__________

Similar questions