Math, asked by Anonymous, 1 year ago

if a is equal to 8 + 3 root 7 and b is equal to 1 / find the value of a square + b square

Attachments:

Answers

Answered by DaIncredible
11
Heya !!!

Identities used :

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  \\  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\  \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}


a = 8 + 3 \sqrt{7}

On squaring both the sides we get,

 {a}^{2}  =  {(8 + 3 \sqrt{7} )}^{2}  \\  \\  {a}^{2}  =  {(8)}^{2}  +  {(3 \sqrt{7} )}^{2}   +  2(8)(3 \sqrt{7} ) \\  \\  {a}^{2}  = 64 + 63  +  48 \sqrt{7}  \\  \\  {a}^{2}  = 127 + 48 \sqrt{7}

b =  \frac{1}{a}  \\  \\ b =  \frac{1}{8  + 3 \sqrt{7} }

On rationalizing the denominator we get,

b =  \frac{1}{8 + 3 \sqrt{7} }  \times  \frac{8 - 3 \sqrt{7} }{8 - 3 \sqrt{7} }  \\  \\ b =  \frac{8 - 3 \sqrt{7} }{ {(8)}^{2} -  {(3 \sqrt{7} )}^{2}  }  \\  \\ b =  \frac{8 - 3 \sqrt{7} }{64 - 63}  \\  \\ b = 8 - 3 \sqrt{7}

On squaring both the sides we get,

 {b}^{2}  =  {(8 - 3 \sqrt{7}) }^{2}  \\  \\  {b}^{2}  =  {(8)}^{2}  +  {(3 \sqrt{7}) }^{2}  - 2(8)(3 \sqrt{7} ) \\  \\  {b}^{2}  = 64 + 63 - 48 \sqrt{7}  \\  \\  {b}^{2}  = 127 - 48 \sqrt{7}

 {a}^{2}  +  {b}^{2}  \\  \\  = (127 + 48 \sqrt{7} ) + (127 - 48 \sqrt{7} ) \\  \\  = 127 + 48 \sqrt{7}  + 127 - 48 \sqrt{7}  \\   \\  = 127 + 127 \\ \\  = 254

Hope this helps ☺

Anonymous: thank u
DaIncredible: My pleasure.. Glad you liked it ☺
Similar questions