Math, asked by mohdamaan9809, 1 year ago

if a is equal to 9 + 4 under root 5 and b is equal to 1 upon a find a square + b square

Answers

Answered by DaIncredible
17
Heya !!!

Identities used :

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}



Given,

a = 9 + 4√5

b = 1/a

Putting the value of a we get,

b =  \frac{1}{9 + 4 \sqrt{5} }  \\

On rationalizing the denominator we get,

b =  \frac{1}{9 + 4 \sqrt{5} }  \times  \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }  \\  \\ b =  \frac{9 - 4 \sqrt{5} }{(9 + 4 \sqrt{5})(9 - 4 \sqrt{5}  )}  \\  \\ b =  \frac{9 - 4 \sqrt{5} }{ {(9)}^{2}  -  {(4 \sqrt{5} )}^{2} }  \\  \\ b =  \frac{9 - 4 \sqrt{5} }{81 - 80}  \\  \\ b = 9 - 4 \sqrt{5}


Now,

 {a}^{2}  =  {(9 + 4 \sqrt{5} )}^{2}  \\  \\  {a}^{2}  =  {(9)}^{2}  +  {(4 \sqrt{5}) }^{2}  + 2(9)(4 \sqrt{5} ) \\  \\  {a}^{2}  = 81 + 80 + 72 \sqrt{5}  \\  \\  {a}^{2}  = 161 + 72 \sqrt{5}  \\

Also,

 {b}^{2}  =  {(9 - 4 \sqrt{5}) }^{2}  \\  \\  {b}^{2}  =  {(9)}^{2}  +  {(4 \sqrt{5}) }^{2}  - 2(9)(4 \sqrt{5} ) \\  \\  {b}^{2}  = 81 + 80 - 72 \sqrt{5}  \\  \\  {b}^{2}  = 161 - 72 \sqrt{5}

Putting the values in (a)^2 + (b)^2


 {a}^{2}  +  {b}^{2} =  (161 + 72 \sqrt{5} ) + (161 - 72 \sqrt{5} ) \\  \\   {a}^{2}  +  {b}^{2}  = 161 + 7 \sqrt{5}  + 161 - 72 \sqrt{5}  \\  \\  {a}^{2}  +  {b}^{2}  = 161 + 161 \\  \\  {a}^{2}  +  {b}^{2}  = 322


Hope this helps ☺

mohdamaan9809: Ok
mohdamaan9809: Hello
mohdamaan9809: You can slove questions
mohdamaan9809: 2√3-3√2/3√2+2√3=a-b√6
mohdamaan9809: Slove kr do ek questions
Similar questions