Math, asked by sujal945, 1 year ago

if a is equal to root 3 minus root 2 by root 3 + root 2 and b is equal to root 3 + root 2 by root 3 minus root 2 then find the a square + b square minus 5 ab ​

Attachments:

Answers

Answered by Anonymous
74

by rationalizing we get, (refer to the attachment)

  • a = 5 - 2√6

  • b = 5 + 2√6

now, we've to find the value of a² + b² - 5ab

= (5 - 2√6)² + (5 + 2√6)² - 5(5 - 2√6)(5 + 2√6)

= [(5)² - 2(5)(2√6) + (2√6)²] + [(5)² + 2(5)(2√6) + (2√6)²] - 5[(5)² - (2√6)²]

= (25 - 20√6 + 24) + (25 + 20√6 + 24) - 5(25 - 24)

= 25 - 20√6 + 24 + 25 + 20√6 + 24 - 5

= 25 + 25 + 24 + 24 - 5

= 98 - 5

= 93 final answer

identities used :-

  • (a + b)^2 = a^2 + 2ab + b^2

  • (a - b)^2 = a^2 - 2ab + b^2

  • (a - b) (a + b) =  a^2 - b^2

Attachments:

Anonymous: nice handwriting :)
Answered by Anonymous
70

Question:

a \:  =  \: \frac{ \sqrt{3} \:  -  \:  \sqrt{2}  }{ \sqrt{3}  \:  +  \:  \sqrt{2} }  \: and \: b \:  =  \: \frac{ \sqrt{3} \:   +   \:  \sqrt{2}  }{ \sqrt{3} \:  -  \:  \sqrt{2} }

Find a² + b² - 5ab

Solution:

a \:  =  \: \frac{ \sqrt{3} \:  -  \:  \sqrt{2}  }{ \sqrt{3}  \:  +  \:  \sqrt{2} }  \: and \: b \:  =  \: \frac{ \sqrt{3} \:   +   \:  \sqrt{2}  }{ \sqrt{3} \:  -  \:  \sqrt{2} }

Rationalize first for a

a \:  =  \: \frac{ \sqrt{3} \:  -  \:  \sqrt{2}  }{ \sqrt{3}  \:  +  \:  \sqrt{2} }  \: \times  \:  \frac{ \sqrt{3} \:  -  \:  \sqrt{2}  }{ \sqrt{3}  \:  -  \:  \sqrt{2} }

Now ..

(a - b) (a + b) = a² - b²

a \:  =  \: \frac{ (\sqrt{3} \:  -  \:  \sqrt{2})^{2}  }{( \sqrt{3} )^{2}   \:   -   \:  (\sqrt{2})^{2} }  \:  =  \:  \frac{ { (\sqrt{3})^{2}  \:  +  \:  { (\sqrt{2} )^{2}  \:  -  \: 2 \sqrt{3}} \sqrt{2} }}{3 \:  -  \: 2}

a \:  = \:  \frac{ { 3  \:  +  \:  2  \:  -  \: 2 \sqrt{6}}}{1} \:  =  \: 5 \:   -  \: 2 \sqrt{6}

» For b

b \:  =  \: \frac{ \sqrt{3} \:   +   \:  \sqrt{2}  }{ \sqrt{3} \:  -  \:  \sqrt{2} } \:  \times  \:  \frac{ \sqrt{3} \:  +  \:  \sqrt{2}  }{ \sqrt{3}  \:  +  \:  \sqrt{2} }

Now ..

(a - b) (a + b) = a² - b²

 b \:  =  \: \frac{( \sqrt{3} \:  +  \:  \sqrt{2} )^{2}   }{ (\sqrt{3})^{2} \:   -   \:  (\sqrt{2})^{2} }  \:  =  \:  \frac{  {( \sqrt{3}) }^{2}  \:  +  \:  {( \sqrt{2}  )^{2}  \:  +  \: 2 \sqrt{3 }\sqrt{2} }  }{3 \:  -  \: 2}

b \:   =  \:  \frac{ 3 \:  +  \: 2  \:  +  \: 2 \sqrt{6}  }{1}  \:  =  \: 5 \:  +  \: 2 \sqrt{6}

______________________________

a² + b² - 5ab => (5 - 2√6)² + (5 + 2√6)² - 5(5- 2√6)(5 + 2√6)

=> 25 + 4(6) - 2(5)(2√6) + 25 + 4(6) + 2(5)(2√6) - 5[5(5 + 2√6) -2√6(5 + 2√6)]

=> 50 + 24 - 20√6 + 24 + 20√6 - 5[(25 + 10√6) - (10√6 + 24)]

=> 50 + 48 - 5( 25 + 10√6 - 10√6 - 24)

=> 98 - 5(1)

=> 93

______________________________

a² + b² - 5ab = 93

__________ [ ANSWER ]

______________________________

Similar questions