if a is equal to root 3 minus root 2 by root 3 + root 2 and b is equal to root 3 + root 2 by root 3 minus root 2 then find the a square + b square minus 5 ab
Answers
by rationalizing we get, (refer to the attachment)
- a = 5 - 2√6
- b = 5 + 2√6
now, we've to find the value of a² + b² - 5ab
= (5 - 2√6)² + (5 + 2√6)² - 5(5 - 2√6)(5 + 2√6)
= [(5)² - 2(5)(2√6) + (2√6)²] + [(5)² + 2(5)(2√6) + (2√6)²] - 5[(5)² - (2√6)²]
= (25 - 20√6 + 24) + (25 + 20√6 + 24) - 5(25 - 24)
= 25 - 20√6 + 24 + 25 + 20√6 + 24 - 5
= 25 + 25 + 24 + 24 - 5
= 98 - 5
= 93 final answer
identities used :-
- (a + b)^2 = a^2 + 2ab + b^2
- (a - b)^2 = a^2 - 2ab + b^2
- (a - b) (a + b) = a^2 - b^2
Question:
Find a² + b² - 5ab
Solution:
Rationalize first for a
→
Now ..
(a - b) (a + b) = a² - b²
→
→
» For b
→
Now ..
(a - b) (a + b) = a² - b²
→
→
______________________________
a² + b² - 5ab => (5 - 2√6)² + (5 + 2√6)² - 5(5- 2√6)(5 + 2√6)
=> 25 + 4(6) - 2(5)(2√6) + 25 + 4(6) + 2(5)(2√6) - 5[5(5 + 2√6) -2√6(5 + 2√6)]
=> 50 + 24 - 20√6 + 24 + 20√6 - 5[(25 + 10√6) - (10√6 + 24)]
=> 50 + 48 - 5( 25 + 10√6 - 10√6 - 24)
=> 98 - 5(1)
=> 93
______________________________
a² + b² - 5ab = 93
__________ [ ANSWER ]
______________________________